



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆周角第一课时教学设计教材的地位和作用:本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用同时,圆周角性质也是说明线段相等,角相等的重要依据之一学情分析:九年级学生有较强的自我发展的意识,较感兴趣于有“挑战性”的任务,也具备一定的逻辑推理能力。所以在教学中应建立数学与生活的联系,创设一系列有启发性、挑战性的问题情景激发学生学习的兴趣,引导学生用数学的眼光思考问题、发现规律、验证猜想。教法:问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体。学法:学生采用动手实践,自主探究,合作交流的学习方法进行学习。在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。教学目标: 1.知识与技能: (1)通过本节的教学使学生理解圆周角的概念,掌握圆周角的性质; (2)准确地运用圆周角性质进行简单的证明计算。 2.过程与方法:引导学生能主动地通过:实验、观察、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养。3.情感、态度与价值观:创设生活情景激发学生对数学的“好奇心、求知欲”;营造“民主、和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验,同时培养学生以严谨求实的态度思考数学。重点难点:1. 重点:经历探索“圆周角与圆心角的关系”的过程,掌握圆周角定理。 2. 难点:了解圆周角的分类、用化归思想,合情推理验证“圆周角与圆心角的关系”。教学准备:教师:几何画板课件、圆规、三角板学生:圆形硬纸片(每位学生若干张)教学过程:一、创设情境,引入新课(1)复习巩固圆心角定义(2)引出问题:足球训练场上教练球门前划了一个圆圈进行无人防守的射门训练如图1,甲、乙两名运动员分别在C、D两地,他们争论不休,都说在自己的位置射门好。如果你是教练,评一评他们的说法。二、师生互动、合作探究探究一:同弧所对的圆周角的大小有什么关系?(1)教师引导学生把实际问题抽象成数学问题:“研究同弧所对的圆周角的大小关系问题”,导入新课。(2)引导学生通过画图测量,发现:C、D的度数相等。并进一步用几何画板测量多画几个弧AB所对的圆周角,并测量出各个角的度数,进一步验证“同弧所对的圆周角的大小相等”。()教师引导,问题转化为研究“同弧所对的圆周角与圆心角的关系”。探究二:同弧所对的圆周角与圆心角的大小有什么关系?()通过几何画板进行演示,引导学生注意弧所对的圆周角的三种情况,并用测量圆心角与圆周角度数的方法来初步猜测同弧所对的圆周角是圆心角度数的一半这一命题。学生动手实践:在圆形硬纸片上任取一段弧,画出该弧所对的圆心角和任意一个圆周角。并根据所画的图形,探索说明“该弧所对的圆周角等于圆心角的一半”成立的理由。分组讨论()充分的活动交流后,教师挑选有代表性的几个小组派代表在黑板上展示图片、并说理、验证。第一类:圆心在圆周角一边上第二类:圆心在圆周角内部第三类:圆心在圆周角外部第一类比较容易,圆心在圆周角上C=1/2AOBA=C OA=OC第二类、第三类比较难,教师引导:由圆的轴对称性和圆周角的分类标准联想到把硬纸片对折、发现过圆周角的顶点C作辅助线“直径”,可以把第二、第三类情况转化为第一类来验证。第二类:圆心在圆周角内部C=AOBACD+BCD=(AOD+BOD )ACD=AOD、BCD=BOD第三类:圆心在圆周角外部C=AOBACD-BCD=(AODBOD )ACD=AOD、BCD=BOD()教师精讲:猜想成立,就可以把情景中研究“同弧所对的圆周角的大小问题”化归为研究“同弧所对的圆周角与圆心角的关系问题”,教师用几何画板演示二、三类情况,加深对所加辅助线和第二、三类情况划归为第一类情况的认识,一目了然。学生归纳严格的推理过程。()由学生归纳发现的规律,教师板书“同弧所对的圆周角度数并且它的度数恰好等于这条弧所对的圆心角度数的一半。”说明:“同弧”说明是“同一个圆”; “等弧”说明是“在同圆或等圆中”()引导: “同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)三、巩固提高层(基础题)1.概念辨析判断下列各图形中的是不是圆周角,并说明理由层(中等题)课本练习题()已知弦AB、CD相交于P点,且AOC=44,BOD=46 求APC的度数四、盘点总结知识:本节课主要学习了圆周角定理及其推论能力:在解决圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角思想方法。在证明中,运用了数学中的分类方法和“化归”思想分类时应做到不重不漏;“化归思想”是将复杂的问题转化成一系列的简单问题或已证问题。情感、态度、价值观:学习过程中,培养学生勇于独立探索、不怕困难,遇到问题,学会与他人沟通、合作。五、学以致用 尊重学生的个体存在差异的客观事实,为了尽可能地让所有的学生都能主动的参与,都能在获得必要发展的前提下,不同的学生获得不同的发展。练习、作业的设计分层要求。A层(基础题)(1)A、B、C三点在O上,BOC=100,则BAC= 度,BDC=(2)在O中,AB是O的直径,D=25,则AOC= (3)已知AB=AC=2cm, BDC=60,则ABC的周长是 。A是O的圆周角,A=40,求OBC的度数.B层(中等题)(1)在O中,BOC=100o,则弦BC所对的圆周角是 度.(2)AD是O直径,BC=CD,A=30,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实木地板采购合同
- 甘肃工程建筑防水方案(3篇)
- 电梯工程低层赔偿方案(3篇)
- 猫课件郑振铎
- 安全教育记录培训钢筋工课件
- 猫咪绘画课件
- 用深度学习推动中职语文教学创新的浅思
- 初中语文“文学阅读与创意表达”的内涵探究
- 低层酒店施工工程方案(3篇)
- 农业废弃物资源化利用项目建议书:2025年技术发展与产业升级
- 高三一轮复习课件
- 驾驶员安全教育培训考试试卷含答案
- 2025广东河源市暨南大学附属第五医院急需紧缺人员招聘117人(第二批)笔试参考题库附答案解析
- 2025江苏航空产业集团有限责任公司人才招聘备考试题及答案解析
- 污水处理站运行记录台账范本
- 无人机地下结构探测技术-洞察及研究
- 化工设备开车相关课件
- 校园基孔肯雅热防控措施课件
- 图像特征提取讲解
- 垃圾焚烧发电厂课件
- GB/T 8165-2025不锈钢复合钢板和钢带
评论
0/150
提交评论