数学北师大版九年级下册2.3 确定二次函数的表达式(第1课时) 教学设计.doc_第1页
数学北师大版九年级下册2.3 确定二次函数的表达式(第1课时) 教学设计.doc_第2页
数学北师大版九年级下册2.3 确定二次函数的表达式(第1课时) 教学设计.doc_第3页
数学北师大版九年级下册2.3 确定二次函数的表达式(第1课时) 教学设计.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 二次函数 2.3 确定二次函数的表达式的教学设计(第1课时)学生知识状况分析学生已经学习了二次函数的一般式和顶点式表达式,二次函数的图像和性质,尤其对特殊类型的二次函数图像已有充分的认识.以前学生已经学习了用待定系数法确定一次函数和反比例函数的关系式,因此本节课学生用类比的方法学习待定系数法确定二次函数的表达式应该并不陌生和困难,因此,课堂教学时应鼓励学生敢于探究与实践,通过小组合作交流等形式,充分调动学生自主学习积极性和培养学生主动发展的习惯和能力.在学生自主学习时,要注意引导学生灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程.教学任务分析本节内容是义务教育课程标准实验教科书数学(北师大版)九年级下册第二章第3节确定二次函数的表达式的第1课时. 本节课是在学习二次函数的表达式和图像性质的基础上展现,目的为二次函数的的实际应用奠基,是本章学习的关键点.本节课既要承接上一节课的数形结合的数学思想,又要能够根据实际问题抽象数学模型,用待定系数法求解二次函数表达式,学生能够根据条件灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程.教学目标1.知识与技能:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.2.过程与方法:能熟练根据抛物线上的两点坐标确定含两个未知系数的二次函数表达式.3.情感、态度与价值观:能把实际问题抽象为数学问题,也能把所学知识运用于实践,培养学生积极参与的意识,加深学生在生活中学数学,将数学知识服务于生活的学习理念,养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,培养数学的应用意识.学习重点根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.学习难点能熟练根据抛物线上的两点坐标确定含两个未知系数的二次函数表达式.教学过程 本节课设计了六个教学环节:复习引入初步探究反馈练习勇于挑战课时小结作业布置 第一环节复习引入1.二次函数表达式的一般形式是什么? y=ax+bx+c (a,b,c为常数,a 0)2.二次函数表达式的顶点式是什么? (a 0).3.用待定系数法解题的一般步骤:(1)根据题意设函数的表达式;(2)根据图象或已知条件列方程(或方程组);(3)解方程(或方程组),求出待定系数;(4)答:写出函数的表达式. 第二环节 初步探究引例 如图2-7是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其表达式吗? 解:根据图象是一抛物线且顶点坐标为(4,3),因此设它的关系式为,又图象过点(10,0),解得 ,图象的表达式为. 想一想:确定二次函数的表达式需要几个条件?小结:确定二次函数的关系式y=ax+bx+c (a,b,c为常数,a 0),通常需要3 个条件; 当知道顶点坐标(h,k)和知道图象上的另一点坐标两个条件,用顶点式可以确定二次函数的关系式.例1 已知二次函数y=ax2+c的图象经过点(2,3)和(1,3),求出这个二次函数的表达式.解:将点(2,3)和(1,3)分别代入二次函数y=ax2+c中,得 解这个方程组,得 所求二次函数表达式为:y=2x25.想一想在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:1.用顶点式确定二次函数关系式,当知道顶点(h,k)坐标时,那么再知道图象上的另一点坐标,就可以确定这个二次函数的关系式. 2. 用一般式y=ax+bx+c确定二次函数时,如果系数a,b,c中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c中三个都是未知的,这个我们将在下节课中进行研究.第三环节:反馈练习1.已知二次函数的图象顶点是(-1,1),且经过点(1,-3),求这个二次函数的表达式.2. 已知二次函数y=x+bx+c的图象经过点(1,1)与(2,3)两点.求这个二次函数的表达式.答案:1.用顶点式;2. ;第四环节: 勇于挑战 例 已知二次函数的图象与y轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式. 解:因为抛物线与y轴交点纵坐标为1,所以设抛物线关系式为,图象经过点(2,5)和(-2,13)解得:a=2,b=-2.这个二次函数关系式为 .第五环节 课时小结 1.通过上述问题的解决,您能体会到求二次函数表达式采用的一般方法是什么? 2.学习了在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式? (1)用顶点式确定二次函数关系式,当知道顶点(h,k)坐标时,那么再知道图象上的另一点坐标,就可以确定这个二次函数的关系式. (2)用一般式y=ax+bx+c确定二次函数时,如果系数a,b,c中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式. 3.本节课在学习中遇到了什么困难?第六环节布置作业课本 习题 2.6 第1,2题教学设计反思1.设计理念 本节课的重点是要学生了解用待定系数法求二次函数的表达式需要两个条件的情况,掌握用待定系数法确定二次函数表达式的步骤和方法,并能根据条件灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。2突出重点、突破难点策略探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到二次函数就在我们身边教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求二次函数表达式的一般

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论