




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一师一优课一课一名师 课堂实录 执教单位 凌源市万元店中学 执教教师 刘佳 2011版义务教育教科书人民教育出版社数学八年级上册 13 4造桥选址 最短路径问题 2 13 4造桥选址 最短路径问题 2 茅以升 1896年1月9日 1989年11月12日 字唐臣 江苏镇江人 土木工程学家 桥梁专家 工程教育家 中国科学院院士 美国工程院院士 中央研究院院士 茅以升主持中国铁道科学研究院工作30余年 为铁道科学技术进步作出了卓越的贡献 积极倡导土力学学科在工程中应用的开拓者 茅以升曾主持修建了中国人自己设计并建造的第一座现代化大型桥梁 钱塘江大桥 成为中国铁路桥梁史上的一块里程碑 新中国成立后 他又参与设计了武汉长江大桥 晚年 他编写了 中国桥梁史 中国的古桥和新桥 等 博闻强记 多思多问 取法乎上 持之以恒 茅以升 问题2 造桥选址问题 如图 A和B两地在一条河的两岸 现要在河上造一座桥MN 桥造在何处可使从A到B的路径AMNB最短 假定河的两岸是平行的直线 桥要与河垂直 A B M N a b 思维分析 如图假定任选位置造桥 1 1 连接 1和 1 从A到B的路径是A 1 1 1 B 1 怎样确定什么情况下A 1 1 1 B 1最短呢 1 1 由于桥长 1 1固定 我们能否找到A 1 B 1的最小值呢 什么图形变换能帮助我们呢 问题解决 如图 将A沿垂直于河岸方向 平移到A1 使AA1等于河宽 连接A1B交河岸于 作桥 此时路径 最短 理由 另任作桥 连接 由平移性质可知 AM MN BN转化为 而 转化为 在 中 由三角形三边关系知A1N1 BN1 A1B 因此 AM MN BN 直观演示 作法二 1 将点B沿垂直于河岸的方向平移一个河宽到点E 则BE即为河宽 2 连接AE交河对岸于点M 则在点M处建桥MN为所求 独立完成 知识小结 在解决最短路径问题时 我们通常利用轴对称 平移等图形变换将已知问题转化为 两点之间 线段最短 的问题 从而做出最短路径的选择 你学会了吗 问题延伸 如图 A和B两地之间有两条河 现要在两条河上各造一座桥MN和PQ 桥分别建在何处才能使从A到B的路径最短 假定河的两岸是平行的直线 桥要与河岸垂直 思维分析 如图 问题中所走总路径是AM MN NP PQ 桥MN和PQ在中间 且方向不能改变 仍无法直接利用 两点之间 线段最短 解决问题 只有利用平移变换转移到两侧或同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城市综合体餐饮业态运营管理及品牌合作合同
- 2025医疗器械跨境代理服务及行业分析报告合同
- 2025年新型网络安全监控平台采购及运维管理合同
- 2025年互联网企业品牌形象升级与全网营销服务合作协议
- 车床租赁与技术改造一体化服务合同(2025年)
- 南水北调题库及答案
- 原木系安全知识培训内容课件
- 农业绿色发展政策支持下的农业环境保护政策评估报告
- 原料药研发知识培训总结课件
- 初中政治培训课件
- DSP原理及应用课件
- 中国共产主义青年团团员发展过程纪实簿
- 医院高危药品分级目录
- 抖音直播手册
- 责任书冷库安全责任书
- Docker容器技术实战项目化教程PPT完整全套教学课件
- 术后切口裂开的应急预案
- 读《交办的技术》心得感悟
- 药事管理与法规杨世民第2版第六章PPT
- 三菱伺服MRJ4故障处理方法
- 操作规程电脑绣花机安全操作规程
评论
0/150
提交评论