




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2011中考总复习数学教材过关训练:全等三角形一、填空题1.如图8-6,ADAC,BCBD,要想使ADCBCD,小王添加了一个条件AC=BD,其依据为_,你还可以加一个条件_,依据为_.图8-6答案:HL ADC=BCD AAS提示:由AC=BD以及公共边CD=DC,依据“HL”可判定两个直角三角形全等.ADC=BCD,A=B=90,CD=DC,由“AAS”判定三角形全等.2.如图8-7,已知ABC中,D是BC上一点,DEAB,DFAC,垂足分别为E、F.如果DE=DF,BAC=60,AD=20 cm,那么DE的长是_ cm.图8-7答案:10提示:DEAB,DFAC,可得AED=AFD=90,又DE=DF,AD=AD,所以RtADERtADF,EAD=30,根据含有30直角三角形的性质,DE=AD=10 cm.3.如图8-8,在ABC中,A=50,BO、CO分别是ABC、ACB的角平分线,则BOC=_.图8-8答案:115提示:A=50,依据三角形内角和定理,ABC+ACB=180-50=130,BO、CO分别是ABC、ACB的角平分线,所以OBC+OCB=(ABC+ACB)=65,BOC=180-(OBC+OCB)=180-65=115.二、选择题4.ABC和DEF中,AB=DE,B=E,补充条件后仍不一定能保证ABCDEF,则补充的这个条件为A.BC=EF B.A=DC.AC=DF D.C=F答案:C提示:补充AC=DF后,条件为两角对边对应相等,两个三角形不一定全等.5.如图8-9,已知ABC的六个元素,则图8-10中甲、乙、丙三个三角形中和ABC全等的图形个数是图8-9A.1 B.2C.3 D.0图8-10答案:B提示:乙和ABC满足两角夹边,丙和ABC满足两角和其中一角的对边,以上两个都可判定三角形全等.6.使两个直角三角形全等的条件是A.两条边对应相等 B.一条边对应相等C.两锐角对应相等 D.一锐角对应相等答案:A提示:两条边对应相等,有两种情况,其一两边若是两直角边,再加上夹角为直角,依据“SAS”判定全等;其二两边若是一直角边和斜边,可依据“HL”判定两直角三角形全等.7.图8-11是将矩形纸片沿对角线折叠得到的,图中(包括实线、虚线在内)共有全等三角形_对.图8-11A.2 B.3C.4 D.5答案:D提示:ABDEDB,ABDDCB,EDBDCB,OBD和它下面重叠部分的三角形全等AOBDOE.三、解答题8.如图8-12,已知AE=CF,DAF=BCE,AD=CB.图8-12(1)问:ADF与CBE全等吗?请说明理由.(2)如果将BEC沿CA边方向平行移动,可有图8-13中3幅图,如上面的条件不变,结论仍成立吗?请选择一幅图说明理由.图8-13答案:(1)全等.提示:证明:AE=CF,AF=CE.又DAF=BCE,AD=CB,ADFCBE.答案:(2)成立.提示:如第一幅图证明:AE=CF,AF=CE.又DAF=BCE,AD=CB,ADFCBE.9.(2010辽宁大连中考)如图8-14,E、F分别是平行四边形ABCD对角线BD所在直线上两点,DE=BF,请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只需研究一组线段相等即可).图8-14(1)连结_;(2)猜想:_;(3)证明:(说明:写出证明过程的重要依据)如图.答案:(1)CF (2)CF=AE (3)四边形ABCD是平行四边形,ADBC,1=2(两直线平行,内错角相等).2+4=180,1+3=180,3=4.又DE=BF,ADECBF(SAS).CF=AE.提示:由平行四边形ABCD,可得对边相等,且FBC=ADE,又DE=BF,所以连结CF,即可创设全等三角形.10.如图8-15,在RtABC中,AB=AC,BAC=90,O为BC中点.图8-15(1)写出O点到ABC三个顶点A、B、C的距离关系(不要求证明);(2)如果M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断OMN的形状,并证明你的结论.(1)答案:OA=OB=OC.提示:连结OA,在RtABC中,AB=AC,BAC=90,O为BC中点,易证得OACOAB,又C=45,所以OAC=45,OC=OA,同理,OA=OB.(2)答案:OMN为等腰直角三角形.证明:AN=BM,OA=OB,OAC=B=45,OANOBM,得ON=OM,AON=BOM,又AOM+BOM=90,所以AON+AOM=90,即MON=90.11.如图8-16,线段BE上有一点C,以BC、CE为边分别在BE的同侧作等边三角形ABC、DCE,连结AE、BD,分别交CD、CA于Q、P.图8-16(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由.(2)取AE的中点M、BD的中点N,连结MN,试判断CMN的形状.(1)答案:BD=AE.证明:等边三角形ABC、DCE中,ACB=ACD=DCE=60,BCD=ACE,BC=AC,DC=EC,所以BCDACE(SAS).(2)答案:等边三角形.证明:由BCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025新款国有企业资产转让合同范本
- 2025存量房租赁合同
- 2025年威廉草莓买卖合同书
- 2025汽车租赁合同范文
- 商标许可合同样本
- IC设计行业市场分析与前景
- 合作开发协议之科技成果转让合同样板
- 药监局抽查管理办法
- 商务谈判策略与合同审查记录表
- 风电场试运行管理方案
- 2024-2025学年广东省广州四中教育集团九年级(上)月考语文试卷
- 储能电池模组PACK和系统集成项目可行性研究报告
- 新学期学校导览模板
- 国家电网公司招聘高校毕业生应聘登记表
- 《丁香结》说课课件(共22张课件)
- Unit4阅读课件沪教牛津版(2024)七年级英语上册
- 2024年小学一年级新生入学开学第一课培训课件
- 2023江苏苏州市昆山高新区招聘社区专职工作者第二批及单笔试历年典型考题及考点剖析附答案带详解
- 2024风力发电机组预应力基础锚栓笼组合件技术规范
- 第二人民医院医药代表来院预约登记表
- 《大青树下的小学》公开课一等奖创新教案
评论
0/150
提交评论