




已阅读5页,还剩51页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
讲义讲义 0101 分式及分式方程分式及分式方程 一 选择题 1 分式中 当时 下列结论正确的是 13 x ax ax A 分式的值为零 B 分式无意义 C 若时 分式的值为零 D 若时 分式的值为零 3 1 a 3 1 a 2 如果分式的值恒为正数 则的 x 取值范围是 6 93 2 xx x A B C D 2 x3 x3 x3x2 且x 3 已知 则的值是 2 111 baba ab A B C 2 D 2 2 1 2 1 4 已知x2 5x 1997 0 则代数式的值为 x 2 2 x 1 2 1 x 2 A 1999 B 2000C 2001 D 2 5 设 m n 0 m2 n2 4mn 则的值等于 22 mn mn A 2 B C D 3 336 6 已知 则直线一定经过 k ba c ca b cb a 2ykxk A 第一 二象限 B 第二 三象限 C 第三 四象限 D 第一 四象限 7 若 a 使分式没有意义 那么 a 的值为 a a a 2 31 1 4 2 A 0 B 或 0 C D 3 1 02或 0 5 1 或 8 甲乙两人相距 k 千米 他们同时乘摩托车出发 若同向而行 则 r 小时后并行 若相向 而行 则 t 小时后相遇 则较快者的速度与较慢者速度之比是 A B C D tr tr tr r kr kr kr kr 二 填空题 9 当 x 时 分式的值为零 x2 x 6 1 x x 3 10 若的值为 则的值为 532 3 2 xx6 1 364 1 2 xx 11 若分式的值为正整数 则整数的值为 1 22 2 x x x 12 如果分式不论 x 取何值都有意义 那么 m 的取值范围是 mxx 4 1 2 13 已知 化简分式的结果为 1a3 12 31 2 aa aa 14 15 如果记 f x 并且 f 1 表示当 x 1 时 y 的值 即 f 1 f 2 2 1 x y x 2 2 11 21 1 表示当 x 时 y 的值 即 f 那么 f 1 f 2 f f 3 1 2 1 2 1 2 2 2 1 1 2 1 5 1 2 1 2 f f n f 结果用含 n 的代数式表示 1 3 1 n 三 综合题 三 综合题 16 16 化简 化简 1 1 2 2 932 3 4 96 2 2 2 a a b a b aa x x xx x 2 3 44 182 3 2 2 17 解分式方程 1 2 11 ba a b bx a a 1 4 3 1 2 1 1 1 x 3 18 已知 求的值 0 0 1 mn mn mn xx 0122 2 bba aba baa 2 224 19 如果 x2 3x 1 0 求的值 2 2 1 x x 20 已知 a b c 为实数 求分式的值 6 1 ba ab 8 1 cb bc 10 1 ac ca cabcab abc 21 已知 a b 均为正数 且 求的值 baba 111 22 b a a b 22 已知 a b c 0 求的值 11 11 11 ba c ca b cb a 23 某开发公司生产的 960 件新产品需要精加工后才能投放市场 现有甲 乙两个工厂都想 加工这批产品 已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用 20 天 而甲工厂每天加工的数量是乙工厂每天加工数量的 公司需付甲工厂加工费用每天 80 元 2 3 需付乙工厂加工费用每天 120 元 1 甲 乙两个工厂每天各能加工多少件新产品 2 公司制定产品加工方案如下 可以由每个厂家单独完成 也可以由两个厂家合作 完成 在加工过程中 公司派一名工程师每天到厂进行技术指导 并负担每天 10 元的午餐 补助费 请你帮公司选择一种既省时又省钱的加工方案 并说明理由 课堂小练课堂小练 分式及分式方程分式及分式方程姓名 姓名 1 化简 其结果是 A B C D 2 计算 3 化简 4 解分式方程 5 分式中 x 取什么值时 分式的值为 0 x 取什么值时 分式无意义 6 先化简 再求值 其中 7 已知 0 0 求的值 023 22 yxyxxy xy yx x y y x 22 8 当 m 为何值时 方程 会产生增根 9 已知方程 是否存在的值使得方程无解 若存在 求出满足条件的的值 1 1 1 2 2 xxx mx x mm 若不存在 请说明理由 10 A B 两地路程为 150 千米 甲 乙两车分别从 A B 两地同时出发 相向而行 2 小时后相遇 相遇 后 各以原来的速度继续行驶 甲车到达 B 后 立即沿原路返回 返回时的速度是原来速度的 2 倍 结 果甲 乙两车同时到达 A 地 求甲车原来的速度和乙车的速度 11 某书店老板去图书批发市场购买某种图书 第一次用 1200 元购书若干本 并按该书定价 7 元出售 很快售完 由于该书畅销 第二次购书时 每本书的批发价已比第一次提高了 20 他用 1500 元所购该 书数量比第一次多 10 本 当按定价售出 200 本时 出现滞销 便以定价的 4 折售完剩余的书 试问该老 板这两次售书总体上是赔钱了 还是赚钱了 不考虑其它因素 若赔钱 赔多少 若赚钱 赚多少 12 某商人用 7200 元购进甲 乙两种商品 然后卖出 若每种商品均用去一半的钱 则一共可购进 750 件 若用的钱买甲种商品 其余的钱买乙种商品 则要少购进 50 件 卖出时 甲种商品可盈利 20 3 2 乙种商品可盈利 25 1 求甲 乙两种商品的购进价和卖出价 2 因市场需求总量有限 每种商品 最多只能卖出 600 件 那么该商人应采取怎样的购货方式才能获得最大利润 最大利润是多少 讲义讲义 0202 分式方程及应用分式方程及应用 例例 1 1 某中学到离学校 15 千米的某地旅游 先遣队和大队同时出发 行进速度是大队的 1 2 倍 以便提前半小时到达目的地做准备工作 求先遣队和大队的速度各是多少 例例 2 2 某商店甲种糖果的单价为每千克 20 元 乙种糖果的单价为每千克 16 元 为了促销 现将 10 千克的乙种糖果和一包甲种糖果混合后销售 如果将混合后的糖果单价定为每千克 17 5 元 那么混合销售与分开销售的销售额相同 这包甲糖果有多少千克 例例 3 3 某市在道路改造过程中 需要铺设一条长为 1000 米的管道 决定由甲 乙两个工程队 来完成这一工程 已知甲工程队比乙工程队每天多铺设 20 米 且甲工程队铺设 350 米所用 的天数与乙工程队铺设 250 米所用的天数相同 1 甲 乙工程队每天各能铺设多少米 2 如果要求完成该项工程的工期不超过 10 天 那么为两工程队分配工程量 以百米 为单位 的方案有几种 请你帮助设计出来 例例 4 4 某商店第一次用 3000 元购进某款书包 很快卖完 第二次又用 2400 元购进该款书包 但每次每个书包的进价是第一次进价的 1 2 倍 数量比第一次少了 20 个 1 求第一次每个书包的进价是多少元 2 若第二次进货后按 80 元 个的价格销售 恰好销售完一半时 根据市场情况 商店 决定对剩余的书包按同一标准一次性打折销售 但要求这次的利润不少于 480 元 问最低 可打几折 例例 5 5 由于受金融危机影响 某店经理的甲型号手机今年的售价比去年每台降价 500 元 如 果卖出相同数量的手机 那么去年销售额为 8 万元 今年销售额只有 6 万元 1 今年甲型号手机每台售价为多少元 2 为了提高利润 该店计划购进乙型号手机销售 已知甲型号手机每台进价为 1000 元 乙型号手机每台进价为 800 元 预计用不多于 1 84 万元且不少于 1 76 万元的资金购 进这两 钟手机共 20 台 请问有几种进货方案 3 若乙型号手机的售价为 1400 元 为了促销 公司决定每台售出一台乙型号手机 返还顾客现金 a 元 而甲型号手机仍按今年的售价销售 要使 2 中所有方案获利相同 a 应取何值 课堂练习 课堂练习 1 学完分式运算后 老师出了一道题 化简 2 32 24 xx xx 小明的做法是 原式 22 2222 3 2 2628 4444 xxxxxxx xxxx 小亮的做法是 原式 22 3 2 2 624xxxxxxx 小芳的做法是 原式 32313 1 1 2 2 2 222 xxxx xxxxxx 其中正确的是 A 小明 B 小亮 C 小芳D 没有正确的 2 解分式方程 11 2 22 x xx 可知方程 A 解为2x B 解为4x C 解为3x D 无解 3 甲志愿者计划用若干个工作日完成社区的某项工作 从第三个工作日起 乙志愿者加盟 此项工作 且甲 乙两人工效相同 结果提前 3 天完成任务 则甲志愿者计划完成此项工 作的天数是 A 8 B 7 C 6 D 5 4 用换元法解分式方程时 如果设 将原方程化为关于的整 13 10 1 xx xx 1x y x y 式方程 那么这个整式方程是 A B C D 2 30yy 2 310yy 2 310yy 2 310yy 5 某服装厂准备加工 400 套运动装 在加工完 160 套后 采用了新技术 使得工作效率比 原计划提高了 20 结果共用了 18 天完成任务 问计划每天加工服装多少套 在这个问题 中 设计划每天加工 x 套 则根据题意可得方程为 A B 18 201 400160 xx 18 201 160400160 xx C D 18 20 160400160 xx 18 201 160400400 xx 6 化简 22 22 44 4 mmnn mn 7 已知 则 432 zyx zyx zyx 23 2 8 若 则 1 2 ab b 22 22 352 235 aabb aabb 9 a b 为实数 且 ab 1 设 P 11 ab ab Q 11 11ab 则 P Q 填 或 10 已知 则 x 9 4 3 2 8 27 321 xx 11 已知 则 M 2 2222 2Mxyyxy xyxyxy 12 1 已知 则 1 4x x 2 42 1 x xx 2 若 3 若 1 3 1 24 2 xx x x x 则 1 3 1 2 x x x x 则 13 若方程有增根 则的值可能是 56 xxa xx a 14 若方程有负数根 则 k 的取值范围是 kxx 2 3 3 15 解分式方程 16 解方程 1 63 104 2 45 x x x x 612 44 4 444 0 2 2 2 2 y yy y yy y y 17 解方程 12 10 43 3234 89 2423 87 1619 45 x x x x x x x x 18 先化简 再求值其中 2 22 3665 10252106 aaa aaaaa A 2 2a 19 甲 乙两人同时从 两地相向而行 如果都走 1 小时 两人之间的距离等于 ABA 两地距离的 如果甲走小时 乙走半小时 这样两人之间的距离等于 间全程B 8 1 3 2 AB 的一半 求甲 乙两人各需多少时间走完全程 20 轮船在一次航行中顺流航行 80 千米 逆流航行 42 千米 共用了 7 小时 在另一次航行 中 用相同的时间 顺流航行 40 千米 逆流航行 70 千米 求这艘轮船在静水中的速度和 水流速度 21 在我市某一城市美化工程招标时 有甲 乙两个工程队投标 经测算 甲队单独完成这 项工程需要 60 天 若由甲队先做 20 天 剩下的工程由甲 乙合做 24 天可完成 1 乙队单独完成这项工程需要多少天 2 甲队施工一天 需付工程款 3 5 万元 乙队施工一天需付工程款 2 万元 若该工程计 划在 70 天内完成 在不超过计划天数的前提下 是由甲队或乙队单独完成该工程省钱 还 是由甲乙两队全程合作完成该工程省钱 22 某玩具店采购人员第一次用 100 元去采购 企鹅牌 玩具 很快售完 第二次去采购时 发现批发价上涨了 0 5 元 用去了 150 元 所购玩具数量比第一次多了 10 件 两批玩具的 售价均为 2 8 元 问第二次采购玩具多少件 23 供电局的电力维修工甲 乙两人要到 45 千米远的 A 地进行电力抢修 甲骑摩托车先行 t t 0 小时后 乙开抢修车载着所需材料出发 1 若 t 小时 抢修车的速度是摩托车速度的 1 5 倍 且甲 乙两人同时到达 求摩 3 8 托车的速度 2 若摩托车的速度是 45 千米 时 抢修车的速度是 60 千米 时 且乙不能比甲晚到 则 t 的最大值是多少 24 某电脑公司经销甲种型号电脑 受经济危机影响 电脑价格不断下降 今年三月份的 电脑售价比去年同期每台降价 1000 元 如果卖出相同数量的电脑 去年销售额为 10 万元 今年销售额只有 8 万元 1 今年三月份甲种电脑每台售价多少元 2 为了增加收入 电脑公司决定再经销乙种型号电脑 已知甲种电脑每台进价为 3500 元 乙种电脑每台进价为 3000 元 公司预计用不多于 5 万元且不少于 4 8 万元的资金购进 这两种电脑共 15 台 有几种进货方案 3 如果乙种电脑每台售价为 3800 元 为打开乙种电脑的销路 公司决定每售出一台乙 种电脑 返还顾客现金元 要使 2 中所有方案获利相同 值应是多少 此时 哪种aa 方案对公司更有利 课堂小练课堂小练 分式方程及应用分式方程及应用 姓名 姓名 1 计算 abab baa A B C D ab b ab b ab a ab a 2 若解分式方程产生增根 则 m 的值是 2 1 11x x m xx x x A B C D 12或 12或12或12或 3 甲 乙两地相距 S 千米 某人从甲地出发 以 v 千米 小时的速度步行 走了 a 小时后改乘汽车 又过 b 小时到达乙地 则汽车的速度 A B C D S ab Sav b Sav ab 2S ab 4 已知 则 2 5350 xx 2 2 1 52 525 xx xx 5 化简 22 22 1 369 xyxy xyxxyy 6 化简 6 34 2 22 22 xxxx xxxx 7 设 则的值等于 0ab 22 60abab ab ba 8 若 2 2 1 2 1 x x x x则 9 已知 则 57 37 nm nm2 7 10 已知关于x的方程3 2 2 x mx 的解是正数 则 m 的取值范围为 11 若关于x的分式方程 3 1 1 xa xx 无解 则a 12 化简 13 求 x 为何值时 代数式的值等于 2 yx y yxyx yx yx yx 2 963 22 22 29 3 1 3 2x xxx 14 已知 x 2 3 y 23 计算代数式 22 11 xyxy xyxy xy A的值 15 五 一 期间 九年一班同学从学校出发 去距学校 6 千米的本溪水洞游玩 同学们分为步行和骑 M N A B x y 千米 分钟 6 5 4 3 2 1 102030O 自行车两组 在去水洞的全过程中 骑自行车的同学比步行的同学少用 40 分钟 已知骑自行车的速度是 步行速度的 3 倍 1 求步行同学每分钟走多少千米 2 右图是两组同学前往水洞时的路程 千米 y 与时间 分钟 的函数图象 x 完成下列填空 表示骑车同学的函数图象是线段 已知点坐标 则点的坐标为 A 30 0 B 16 某服装厂为学校艺术团生产一批演出服 总成本 3200 元 售价每套 40 元 服装厂向 25 名家庭贫困 学生免费提供 经核算 这 25 套演出服的成本正好是原定生产这批演出服的利润 问这批演出服生产了 多少套 17 根据规划设计 某市工程队准备在开发区修建一条长 300 米的盲道 铺设了 60 米后 由于采用新的施 工方式 实际每天修建盲道的长度比原计划增加 10 米 结果共用了 8 天完成任务 该工程队改进技术后 每天铺设盲道多少米 18 某商场计划购进一批甲 乙两种玩具 已知一件甲种玩具的进价与一件乙种玩具的进价的和为 40 元 用 90 元购进甲种玩具的件数与用 150 元购进乙种玩具的件数相同 1 求每件甲种 乙种玩具的进价分别是多少元 2 商场计划购进甲 乙两种玩具共 18 件 其中甲种玩具的件数少于乙种玩具的件数 商场决定此 次进货的总资金不超过 1000 元 求商场共有几种进货方案 讲义讲义 0303 反比例函数反比例函数 例例 1 1 设函数 y m 2 当 m 取何值时 它是反比例函数 它的图象位于哪些象 2 55mm x 限 求当时函数值 y 的变化范围 2 2 1 x 例例 2 2 如图 已知一次函数8 xy和反比例函数 x k y 图象在第一象限内有两个不同的 公共点 A B 1 求实数k的取值范围 2 若 AOB 的面积 S 24 求k的值 例例 3 3 如图 已知点 A 4 m B 1 n 在反比例函数的图象上 直线 AB 分别与 x 轴 x y 8 y 轴相交于 C D 两点 1 求直线 AB 的解析式 2 C D 两点坐标 3 是多少 BODAOC SS 例例 4 4 如图 函数 x y 5 在第一象限的图象上有一点 C 1 5 过点 C 的直线 y kx b k 0 与 x 轴交于点 A a 0 1 写出 a 关于 k 的函数关系式 2 当该直线与双曲线 x y 5 在第一象限的另一交点 D 的横坐标是 9 时 求 COD 的面 积 课堂练习 课堂练习 1 若反比例函数的图象经过点 其中 则此反比例函数的图象在 k y x 3 m m 0m A 第一 二象限B 第一 三象限C 第二 四象限D 第三 四象限 2 函数的图象经过点 4 6 则下列个点中在图象上的是 x k y x k y A 3 8 B 3 8 C 8 3 D 4 6 3 已知反比例函数的图象在第二 第四象限内 函数图象上有两点 A y1 x k y 72 B 5 y2 则 y1与 y2的大小关系为 A y1 y2 B y1 y2 C y1 y2 D 无法确定 4 已知反比例函数的图像上有两点 A B 且 0 k x k y 1 x 1 y 2 x 2 y 21 xx 则的值是 21 yy A 正数 B 负数 C 非正数 D 不能确定 5 如图 反比例函数的图象与直线相交于 B 两点 AC 轴 BC x y 5 0 kkxyy 轴 则 ABC 的面积等于 个面积单位 x A 4 B 5 C 10 D 20 6 设 P 是函数 4 p x 在第一象限的图像上任意一点 点 P 关于原点的对称点为 P 过 P 作 PA 平行于 y 轴 过 P 作 P A 平行于 x 轴 PA 与 P A 交于 A 点 则 PAP 的面积 A 等于 2 B 等于 4 C 等于 8 D 随 P 点的变化而变化 7 如图 直线 是经过点 1 0 且与 y 轴平行的直线 Rt ABC 中直角边 AC 4 BC 3 将 BC 边在直线 上滑动 使 A B 在函数 x k y 的图象上 那么 k 的值是 A 3 B 12 D 4 15 8 若正比例函数2ykx 与反比例函数 0 k yk x 的图象交于点 1A m 则k的值是 A 2 或2 B 2 2 或 2 2 C 2 2 D 2 9 如图 点 P 在反比例函数 x y 1 x 0 的图象上 且横坐标为 2 若将点 P 先向右平移两 个单位 再向上平移一个单位后得到点 P 则在第一象限内 经过点 P 的反比例函数图 象的解析式是 A 0 5 x x y B 0 5 x x y C 0 5 x x y D 0 6 x x y 10 如图 点 B P 在函数 0 4 x x y 的图象上 四边形 COAB 是正方形 四边形 FOEP 是长 方形 下列说法不正确的是 A 长方形 BCFG 和长方形 GAEP 的面积相等 B 点 B 的坐标为 4 4 C x y 4 的图象关于过 O B 的直线对称 D 长方形 FOEP 和正方形 COAB 面积相等 11 在的三个顶点中 可能在反比例函数ABC 23 45 3 2 ABC 的图象上的点是 0 k yk x 12 若反比例函数 y 的图象位于一 三象限内 正比例函数 y 2k 9 x 过二 四象 3k x 限 则 k 的整数值是 13 已知点 P 1 a 在反比例函数 y k 0 的图象上 其中 a m2 2m 3 m 为实数 则这 k x 个函数的图象在第 象限 14 已知反比例函数 y k 0 当 x 0 时 y 随 x 的增大而增大 那么一次函数 x k y kx k 的图像过象限 15 反比例函数的图象如图所示 点 M 是该函数图象上一点 MN 垂直于 x 轴 垂足是 x k y 点 N 如果 S MON 2 则 k 的值为 16 如图 已知双曲线 x 0 经过矩形 OABC 边 AB 的中点 F 交 BC 于点 E 且四边形 x k y OEBF 的面积为 4 则 k 17 如图 在直角坐标系中 直线 y 6 x 与函数 0 5 x x y 的图象交于 A B 设 A x1 y1 那么长为 x1 宽为 y1的矩形的面积和周长分别是 18 已知 都在 6 y x 图像上若则的值为 11 yxA 22 yxB3 21 xx 21y y 19 两个反比例函数 在第一象限内的图象点 在反比 x y 3 x y 6 1 P 2 P 3 P 2012 P 例函数上 它们的横坐标分别为 纵坐标分别是 1 3 5 x y 6 1 x 2 x 3 x 2012 x 共 2012 个连续奇数 过 分别作轴的平行线 与的图象交 1 P 2 P 3 P 2012 Py x y 3 点依次为 则 111 yxQ 222 yxQ 2012 20122012 yxQ 20122012Q P 20 若反比例函数 y 的图象经过第二 四象限 则函数的解析式为 24 2 12 m x m 21 已知一次函数的图象与反比例函数的图象相交 其中一个交点的yx 1 3 2k y k x 2 3 纵坐标为 6 1 求两个函数的解析式 2 结合图象求出时 x 的取值范围 yy 12 22 已知反比例函数 y 的图象经过点 4 若一次函数 y x 1 的图象平移后经过该 x k 2 1 反比反例函数图象上的点 B 2 m 求平移后的一次函数图像与 x 轴的交点坐标 23 平行于直线的直线 不经过第四象限 且与函数和图象交于点 A 过yx l 3 0 yx x 点 A 作轴于点 B 轴于点 C 四边形 ABOC 的周长为 8 求直线 的解析式 ABy ACx l AB O C y x 3 0 yx x l 24 如图 已知点 A 4 B 1 在反比例函数 x y 8 的图象上 直线 AB 与 轴 交于点 C 1 求 n 值 2 如果点 D 在 x 轴上 且 DA DC 求点 D 的坐标 25 如图 正比例函数的图象与反比例函数在第一象限的图象交于点 1 2 yx k y x 0 k A 过点作轴的垂线 垂足为 已知的面积为 1 1 求反比例函数的解析式 AxMOAM 2 如果为反比例函数在第一象限图象上的点 点与点不重合 且点的横坐标BBAB 为 1 在轴上求一点 使最小 xPPAPB 26 如图 四边形 OABC 是面积为 4 的正方形 函数 x 0 的图象经过点 B k y x 1 求 k 的值 2 将正方形 OABC 分别沿直线 AB BC 翻折 得到正方形 MABC MA BC 设线段 MC NA 分别与函数 x 0 的图象交于点 E F 求线段 k y x EF 所在直线的解析式 课堂小练课堂小练 反比例函数反比例函数姓名 姓名 1 下列数表中分别给出了变量 y 与变量 x 之间的对应关系 其中是反比例函数关系的是 2 已知 且 则函数与在同一坐标系中的图象不可能是 ab 000aba b yax b ab y x 3 若点 3 4 是反比例函数 y 图象上一点 则此函数图象必须经过点 x mm12 2 A 2 6 B 2 6 C 4 3 D 3 4 4 若 A a1 b1 B a2 b2 是反比例函数 x y 2 图象上的两个点 且 a1 a2 则 b1与 b2的大小关系 是 A b1 b2 B b1 b2 C b1 b2 D 大小不确定 5 如图 A B 是反比例函数 y x 2 的图象上的两点 AC BD 都垂直于 x 轴 垂足分别为 C D AB 的延长 线交 x 轴于点 E 若 C D 的坐标分别为 1 0 4 0 则 BDE 的面积与 ACE 的面积的比值是 A 2 1 B 4 1 8 1 D 16 1 6 如图 一次函数与反比例函数的图象交于 则使的 1 1yx 2 2 y x 21 12 AB 12 yy 的取值范围是 x 7 当 n 取 值时 y n2 2n x是反比例函数 8 是关于的反比例函数 且图象在第二 四象限 则的值为 72 2 5 mm xmyyxm 9 反比例函数 y k 是常数 k 0 的图象经过点 a a 那么 k 0 填 或 0 OMN 的面积为 S 求 S 和 t 的函数关系式 并指出 t 的取值范 围 例例 4 4 已知 如图 正比例函数的图象与反比例函数的图象交于点 A 3 2 yax k y x 试确定上述正比例函数和反比例函数的表达式 根据图象回答 在第一象限内 当取何值时 反比例函数的值大于正比例函数的值 x M m n 是反比例函数图象上的一动点 其中 0 m 3 过点作直线 MN x 轴 交 yM 轴于点 B 过点 A 作直线 AC y 轴交 x 轴于点 C 交直线 MB 于点 D 当四边形 OADM 的面积 为 6 时 请判断线段 BM 与 DM 的大小关系 并说明理由 课堂练习 课堂练习 1 已知关于 x 的函数 y k x 1 和 y k 0 它们在同一坐标系中的大致图象是 k x 2 函数 y 与函数 y x 的图象在同一平面直角坐标系内的交点个数是 1 x A 1 个 B 2 个 C 3 个 D 0 个 3 已知点 P x y 在函数的图象上 那么点 P 应在平面直角坐标系中的 x x y 2 1 A 第一象限 B 第二象限 C 第三象限 D 第四象限 4 根据图中所示的程序 得到了 y 与 x 的函数图象 过点 M 作 PQ x 轴交图象于点 P Q 连 接 OP OQ 则以下结论 x 0 时 x 2 y OPQ 的面积为定值 x 0 时 y 随 x 的 增大而增大 MQ 2PM POQ 可以等于 90 倒 5 2 倒 5 1 倒 倒 y 倒 倒 倒 倒 4 2 倒 倒 倒 倒 倒 倒 倒 倒 倒 倒 倒 x PQM 其中正确的结论是 A B C D 5 如图所示 梯形 AOBC 的顶点 A C 在反比例函数图像上 OA BC 上底边 OA 在直线 y x 上 下底边 BC 交 x 轴于 E 2 0 则四边形 AOEC 的面积为 A 3 B 3 C 3 1 D 3 1 6 如图 是反比例函数和 在第一象限的图象 直线 AB x 轴 并分 1 k y x 2 k y x 12 kk 别交两条曲母于 A B 两点 若 S AOB 2 则的值是 21 kk A 1 B 2 C 4 D 8 7 反比例函数 y 的图象如图 5 所示 则 k 的值可能是 k x A 1 B C 1 D 2 1 2 8 若 A B 两点关于y轴对称 且点 A 在双曲线 x y 2 1 上 点 B 在直线3 xy上 设点 A 的坐标为 a b 则 a b b a 9 函数 1 0 yx x x y 9 2 0 x 的图象如图所示 则结论 两函数图象的交点 A 的坐标为 3 3 当3x 时 21 yy 当 1x 时 BC 8 当 x逐渐增大时 1 y随着x的增大而增大 2 y随着x 的增大而减小 其中正确结论的序号是 10 如图 双曲线 0 2 x x y 经过四边形 OABC 的顶点 A C ABC 90 OC 平分 OA 与 x轴正半轴的夹角 AB x轴 将 ABC 沿 AC 翻折后得到 AB C B 点落在 OA 上 则四 边形 OABC 的面积是 11 已知 y y1 y2 y1与 1 成正比例 2与 1 成反比例 当 0 时 5 当 2 时 7 1 求 与 的函数关系式 2 当 5 时 求 的值 12 已知一次函数 y x m 与反比例函数 y 1m x m 1 的图象在第一象限内的交点为 P x0 3 1 求 x0的值 2 求一次函数和反比例函数的解析式 13 如图 Rt ABO 的顶点 A 是双曲线 y 与直线 y x k 1 在第二象限的交 k x 点 AB x 轴于 B 且 S ABO 3 2 1 求这两个函数的解析式 2 求直线与双曲线的两个交点 A C 的坐标和 AOC 的面积 14 已知函数的图象和两条直线 y x y 2x 在第一象限内分别相交于 P1和 P2两点 过 x y 4 P1分别作 x 轴 y 轴的垂线 P1Q1 P1R1 垂足分别为 Q1 R1 过 P2分别作 x 轴 y 轴的垂线 P2 Q2 P2 R2 垂足分别为 Q 2 R 2 求矩形 O Q 1P1 R1和 O Q2P2 R2的周长 并比较它们的大 小 课堂小练课堂小练 04 04 反比例综合题反比例综合题 X k B 1 c O m姓名 姓名 1 函数y kxb 与 y k x kb 0 的图象可能是 2 函数与 k 0 的图象的交点个数是 ykx k y x A 2 B 1 C 0 D 不确定 3 已知 a b 0 点 P a b 在反比例函数的图象上 则直线不经过的象限是 x a y baxy A 第一象限 B 第二象限 C 第三象限 D 第四象限 4 在函数 a 为常数 的图象上有三个点 则函数值的大小关 x a y 1 2 2 1 4 1 1 321 yyy 321 yyy 系是 A B C D 5 如图 直线 L 和双曲线交于 A B 两点 P 是线段 AB 上的点 不与 A B 点重合 过点 0 k x k y A B P 分别向 x 轴作垂线 垂足分别为 C D E 连接 OA OB OP 设 AOC 的面积为 S1 BOD 的面 积为 S2 POE 的面积为 S3 则 A B C D 321 SSS 321 SSS 321 SSS 321 SSS 6 如图 过 y 轴正半轴上的任意一点 P 作 x 轴的平行线 分别与反比例函数的图象交于 x y x y 24 和 点 A 和点 B 若点 C 是 x 轴上任意一点 连接 AC BC 则 ABC 的面积为 A 3 B 4 C 5 D 6 7 已知函数是反比例函数 若它的图象在第二 四象限内 那么 k 3 2 1 kk xky 若 y 随 x 的增大而减小 那么 k 8 已知一次函数与反比例函数的图象的一个交点为 P a b 且 P 到原点的距离是 10 求2 xy x k y a b 的值及反比例函数的解析式 9 如图 一次函数的图象与反比例函数的图象交于第一象限 C D 两点 坐标轴交于 A Bbaxy x k y 两点 连结 OC OD O 是坐标原点 利用图中条件 求反比例函数的解析式和 m 的值 双曲线上是否存在一点 P 使得 POC 和 POD 的面积相等 若存在 给出证明并求出点 P 的坐标 若不存在 说明理由 10 已知 如图 在平面直角坐标系中 直线 AB 与轴交于点 A 2 0 与反比例函数在第一象xOyx 限内的图象交于点 B 2 n 连接 BO 若 S AOB 4 1 求该反比例函数的解析式和直线 AB 的解析式 2 若直线 AB 与 y 轴的交点为 C 求 OCB 的面积 讲义讲义 0505 勾股定理勾股定理 课堂练习 课堂练习 1 若一直角三角形两边长分别为 12 和 5 则第三边长为 A 13 B 13 或119 C 13 或 15 D 15 2 直角三角形的周长为 12 斜边长为 5 则面积为 A 12 B 10 C 8 D 6 3 如果一个等腰直角三角形的面积是 2 则斜边长的平方为 A 2 B 4 C 8 D 4 2 4 若直角三角形两条直角边长分别为 5 12 则斜边上的高为 A 6 B 13 80 C 8 D 13 60 5 若等腰三角形两边长分别为 4 和 6 则底边上的高等于 A 或 B 或 C X k B 1 c O m 247741 D 247 6 ABC 中 若 则此三角形应是 abcba2 22 A 锐角三角形 B 直角三角形 C 钝角三角形 D 等腰三角形 7 一个直角三角形的两条直角边长为 a b 斜边上的高为 h 斜边长为 c 则以 c h a b h 为边的三角形的形状是 A 直角三角形 B 锐角三角形 C 钝角三角形 D 不能确定 8 直角三角形的两条直角边长为 a b 斜边上的高为 h 则下列各式中总能成立的是 A ab h2 B a2 b2 2h2 C D a 1 b 1 h 1 2 1 a 2 1 b 2 1 h 9 直角三角形中一直角边的长为 9 另两边为连续自然数 则直角三角形的周长为 A 121 B 120 C 90 D 不能确定 10 如图是一个长方体盒子 尺寸如图所示 在长方体下底部的 A 点有一只蚂蚁 它想吃到 上底面 B 点的食物 BC 3cm 需爬行的最短路程是多少 11 如图 公路 MN 和公路 PQ 在 P 点处交汇 点 A 处有一所中学 AP 160 米 点 A 到公路 MN 的距离为 80 米 假使拖拉机行驶时 周围 100 米以内会受到噪音影响 那么拖拉机在公 路 MN 上沿 PN 方向行驶时 学校是否会受到影响 请说明理由 如果受到影响 已知拖拉 机的速度是 18 千米 小时 那么学校受到影响的时间为多少 12 三角形 ABC 是等腰三角形 AB AC 13 BC 10 将 AB 向 AC 方向对折 再将 CD 折叠到 CA 边上 折痕 CE 求三角形 ACE 的面积 13 边长为 8 和 4 的矩形 OABC 的两边分别在直角坐标系的 X 轴和 Y 轴上 若沿对角线 AC 折 叠后 点 B 落在第四象限 B1 处 设 B1C 交 X 轴于点 D 求 三角形 ADC 的面积 14 已知 如图 ABC 是等腰直角三角形 BAC 90 EAF 与 BC 交于 E F 两点 EAF 45 求证 222 EFCFBE 15 如图 在中 相交于 于 ABC BEADCDAECABCAB PADBQ Q 求证 PQBP2 16 如图 在中 D 为斜边 BC 中点 求证 ABCRt 90 ADFDE 222 CFBEEF 17 如图 已知 于 P 求证 18 折叠矩形纸片 先折出折痕对角线 BD 在绕点 D 折叠 使点 A 落在 BD 的 E 处 折痕 DG 若 AB 2 BC 1 求 AG 的长 19 矩形 ABCD 中 AB 6 BC 8 先把它对折 折痕为 EF 展开后再沿 BG 折叠 使 A 落在 EF 上的 A1 求第二次折痕 BG 的长 20 矩形 ABCD 如图折叠 使点 D 落在 BC 边上的点 F 处 已知 AB 8 BC 10 求折痕 AE 的长 21 如图 长方形纸片 ABCD 中 AB 4cm BC 3cm 现将 A C 重合 使纸片折叠压平 设折痕 为 EF 试确定重叠部分三角形 AEF 的面积 22 圆柱形坡璃容器 高 18cm 底面周长为 60cm 在外侧距下底 1cm 点 S 处有一蜘蛛 与蜘 蛛相对的圆柱形容器的上口外侧距开口处 1cm 的点 F 处有一苍蝇 试求急于捕获苍蝇充饥 的蜘蛛所走的最短路线的长度 23 如图所示 ABC 是等腰直角三角形 AB AC D 是斜边 BC 的中点 E F 分别是 AB AC 边上的点 且 DE DF 若 BE 12 CF 5 求线段 EF 的长 X k B 1 c O m 课堂小练课堂小练 05 05 直角三角形直角三角形 姓名 姓名 1 一根旗杆在离地面 4 5 米的地方折断 旗杆顶端落在离旗杆底部 6 米处 则旗杆折断前高 A 10 5 米 B 7 5 米 C 12 米 D 8 米 2 等腰三角形底边长 10 腰长为 13 则此三角形的面积为 A 40 B 50 C 60D 70 3 三角形的三边长为abcba2 22 则这个三角形是 A 等边三角形 B 钝角三角形 C 直角三角形 D 锐角三角形 4 已知直角三角形中 30 角所对的直角边长是cm 则另一条直角边的长是 32 A 4 cm B cm C 6 cm D cm3436 5 ABC 中 AB 15 AC 13 高 AD 12 则 ABC 的周长为 A 42 B 32 C 42 或 32 D 37 或 33 6 如图 在中 过顶点的直线的平分线分别交ABCRt 90 BACAACBABCBCDE 于点 若 则的长为 DEDE 10 6 BCACDE A 14 B 16 C 18 D 20 7 若一个三角形的三边之比为 3 4 5 且周长为 60cm 则它的面积为 8 一个长方形的长为 12cm 对角线长为 13cm 则该长方形的周长为 9 在 ABC 中 C 900 BC 60cm CA 80cm 一只蜗牛从 C 点出发 以每分 20cm 的速度沿 CA AB BC 的路 径再回到 C 点 需要 分的时间 10 在 ABC 中 C 90 AC 2 1 cm BC 2 8 cm 1 求这个三角形的斜边 AB 的长和斜边上的高 CD 的 长 2 求斜边被分成的两部分 AD 和 BD 的长 11 如图 某购物中心在会十 一间准备将高 5 m 长 13m 宽 2m 的楼道上铺地毯 已知地毯每平方米 18 元 请你帮助计算一下 铺完这个楼道至少需要多少元钱 12 甲 乙两位探险者到沙漠进行探险 没有了水 需要寻找水源 为了不致于走散 他们用两部对话机 联系 已知对话机的有效距离为 15 千米 早晨 8 00 甲先出发 他以 6 千米 时的速度向东行走 1 小时 后乙出发 他以 5 千米 时的速度向北行进 上午 10 00 甲 乙二人相距多远 还能保持联系吗 13 如图所示 有一个圆柱形状的建筑物 底面直径为 8 m 高为 7 m 为方便工作人员从底部 A 点到达 顶部的 B 点 要绕建筑物修一螺旋状的梯子 试求梯子最短为多少米 14 已知 如图 B D 90 A 60 AB 4 CD 2 求 四边形 ABCD 的面积 讲义讲义 0606 勾股定理的应用勾股定理的应用 一 选择题 一 选择题 1 如同 四边形 ABCD 中 AB BC ABC CDA 900 BEAD 于点 E 且四边形 ABCD 的面积 为 8 则 BE A 2 B 3 C D 2232 2 将一个有 45 度角的三角板的直角顶点放在一张宽为 3cm 的纸带边沿上 另一个顶点在纸 带的另一边沿上 测得三角板的一边与纸带的一边所在的直线成 30 度角 如图 3 则三 角板的最大边的长为 A cm B 6cm C 3cm D cm2326 3 如图是 2002 年 8 月北京第 24 届国际数学家大会会标 由 4 个全等的直角三角形拼合而 成 若图中大小正方形面积分别是 62和 4 则直角三角形的两条直角边长分别为 2 1 A 6 4 B 62 4 C 62 4 D 6 4 2 1 2 1 2 1 2 1 4 在同一平面上把三边 BC 3 AC 4 AB 5 的三角形沿最长边 AB 翻折后得到 ABC 则 CC 的长等于 A B C D 5 12 5 13 6 5 5 24 5 如图 在单位正方形组成的网格图中标有 AB CD EF GH 四条线段 其中能构成一个直角 三角形三边的线段是 A CD EF GH B AB EF GH C AB CD GH D AB CD EF 二 填空题 二 填空题 6 三角形三个内角之比为 1 2 3 它的最长边为 a 那么以其余两边为边所作的正方形面 积分别为 7 等边三角形的高为 a 则它的面积是 8 有两根木条 长分别为 60cm 和 80cm 现再截一根木条做一个钝角三角形 则第三根木条 x 长度的取值范围 9 如图 Rt ABC 中 BC 是斜边 将 ABP 绕点 A 逆时针旋转后 能与 ACP 重合 如果 AP 1 则 PP 10 如图 是等边三角形 点是边上任意一点 于点 ABC DBCDEAB E 于点 若 则 DFAC F2BC DEDF 11 已知 如图 ABC 中 C 90 点 O 为 ABC 的三条角平分线的交点 OD BC OE AC OF AB 点 D E F 分别是垂足 且 BC 8cm CA 6cm 则点 O 到三 边 AB AC 和 BC 的距离分别等于 cm 12 一个正方体物体沿斜坡向下滑动 其截面如图所示 正方形 DEFH 的边长为 2 米 坡角 A 30 B 90 BC 6 米 当正方形 DEFH 运动到什么位置 即当 AE 米时 有 DC AE BC 13 如图 P 是矩形 ABCD 内一点 PA 1 PB 5 PC 7 则 PD 三 综合题 三 综合题 14 如图所示 在平面直角坐标系中 点 A B 的坐标分别为 A 3 1 B 2 4 OAB 是直角三角形吗 借助于网格 证明你的结论 15 已知 a b c 为 ABC 的三边 且满足 a2c2 b2c2 a4 b4 试判断 ABC 的形状 16 在 ABC 中 BC a AC b AB c 若 C 900 如图 1 根据勾股定理 则 a2 b2 c2 若 ABC 不是直角三角形 如图 2 和图 3 请你类比勾股定理 试猜想 a2 b2与 c2的 关系 并证明你的结论 17 已知直角三角形的周长为 2 斜边上的中线为 1 求它的面积 7 18 王伟准备用一段长 30 米的篱笆围成一个三角形形状的小圈 用于饲养家兔 已知第一条 边长为 a 米 由于受地势限制 第二条边长只能是第一条边长的 2 倍多 2 米 1 请用 a 表示第三条边长 2 问第一条边长可以为 7 米吗 为什么 请说明理由 并求出 a 的取值范围 3 能否使得围成的小圈是直角三角形形状 且各边长均为整数 若能 说明你的围法 若不能 请说明理由 19 如图 已知 Rt ABC ACB 900 三边分别为 a b c 分别以 AC BC AB 为直径作半 圆 画成如图形式 求证 S影 SRt ABC 20 如图 长方形 ABCD 中 AD 8cm CD 4cm 1 若点 P 是边 AD 上的一个动点 当 P 在什么位置时 PA PC 2 在 1 中 当点 P 在点 P 时 有 Q 是 AB 边上的一个动点 若时 CPAP 4 15 AQ 与垂直吗 为什么 QP CP 21 已知 如图 DE m BC n EBC 与 DCB 互余 求 BD2 CD2 22 如图 在坐标系中 直线与 x 轴和 y 轴交与点 A 和点 B 将 OAB 绕 O 点旋转 4 3 4 xy 得到 OA1B2 再绕 B1旋转 得到 O1B1A2 1 求直线 A1B1解析式 2 求点 A2的坐标 3 链接 OO1 求 OO1B1的面积 23 如图 有一块塑料矩形模板 ABCD 长为 10cm 宽为 4cm 将你手中足够大的直角三角板 PHF 的直角顶点 P 落在 AD 边上 不与 A D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏扬州人才集团下属企业招聘6人笔试备考试题及1套参考答案详解
- 2025江苏徐州市中心医院招聘高层次卫生人才31人笔试备考题库附答案详解
- 2025江苏扬州宝应县“乡村振兴青年人才”招聘67人笔试备考题库及参考答案详解1套
- 2025广东选拔汕头市市级乡村振兴人才80人笔试备考题库参考答案详解
- 2025河北邯郸市峰峰矿区招聘农村党务(村务)工作者157人笔试备考试题及1套参考答案详解
- 2025年部编版语文四年级下册第一次月考测试题附答案
- 2025年宝鸡市公务员考试行测试卷历年真题参考答案详解
- 2025年注册环保工程师之注册环保工程师专业基础能力提升试卷A卷附答案
- 幼儿故事淡蓝的元旦旅程
- 房地产项目管理中的安全隐患控制
- 整体施工劳务服务方案
- DBJT13-119-2010 福建省住宅工程质量分户验收规程
- 2025年贵州盘江精煤股份有限公司招聘笔试参考题库含答案解析
- GB/T 26718-2024城市轨道交通安全防范系统技术要求
- 马工程《艺术学概论》课件424P
- 2025届上海交大附属中学高三第三次模拟考试英语试卷含解析
- 胃十二指肠溃疡瘢痕性幽门梗阻病因介绍
- 安全管理知识培训课件
- 月亮姑娘做衣裳
- 汽车教练员测试题(含参考答案)
- 中控室安全生产制度模版(3篇)
评论
0/150
提交评论