




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 特殊平行四边形回顾与思考榆次五中 刘喜莲一、学生知识状况分析“特殊的平行四边形”是学生继学习了平行四边形之后的一个学习内容,学生已经学习了平行四边形的有关知识,对平行四边形的性质和判定已有一定的认识,学生在小学也接触过矩形,菱形,正方形的一些简单应用。本节主要复习三种特殊平行四边形的性质和判定,以及对他们的比较。研究过程中以类比,归类为主要方法,同时,九年级学生已经具备比较强的归纳、总结能力,利用学生间相互评价、相互提问,使之参与课堂的热情提高。二、教学任务分析本节是从三种特殊平行四边形的关系入手,使学生进一步认识矩形、菱形、正方形的内在关系:不仅要让学生了解三种特殊平行四边形的性质和判定,更重要的是让学生通过观察、比较、归类找出他们内在的转化方法。通过自己动经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。本节共一个课时,已总结和简单练习为主。1知识目标:复习三种特殊平行四边形的性质及判定,及理解他们之间的关系。2能力目标:(1)经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维(2)经历课前准备总结,探索三种特殊平行四边形的关系,发展总结归纳能力和初步的演绎推理的能力;(3)在具体问题的证明过程中,有意识地渗透实验论证、逆向思维的思想,提高学生的能力。3情感与价值观要求(1)积极参与数学学习活动,对数学有好奇心和求知欲(2)通过“猜想总结证明应用“的数学活动提升科学素养.4. 教学重点 (1) 三种特殊平行四边形性质和判定的复习.(2) 三种特殊平行四边形的关系.4教学难点总结关系方法的多样性和系统性。三、教学过程分析本节课设计了五个教学环节:第一环节:交流创意,导入课题;第二环节:动手操作、探求新知;第三环节:先猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。第一环节:交流创意,导入课题内容:事先布置好任务,让学生用自己的方式总结三种特殊平行四边形的关系图,课堂上先交流讨论。目的:通过学生自己的创意入手,激发学生学习兴趣。引出关系图注意事项:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。平行四边形矩形菱形正方形有一个角 是直角邻边相等邻边相等有一个角 是直角有一个角是直角且邻边相等第二环节:交流创意,总结归纳内容:事先布置好任务,让学生用自己的方式总结三种特殊平行四边形的性质和判定方法。目的:通过学生自己的作品入手,激发学生学习兴趣。引出特殊平行四边形的性质,判定表格,梳理本章知识。注意事项:提高了课堂效率,激发学生自我总结的兴趣,培养学生表达能力。第三环节:小试牛刀,基础巩固内容:一组考察基础的判断,填空题1、一组对边平行的四边形是梯形。( ) 2、一组对边平行,另一组对边相等的的四边形是平行四边形。( ) 3、两条对角线相等的四边形是矩形。( )4、一组邻边相等的的矩形是正方形。( )5、对角线互相垂直的四边形是菱形。( )6、两条对角线互相平分的四边形是平行四边形。( )目的:巩固基础知识注意事项:学生通过简单快速答题,查漏补缺。第四环节:出示例题,总结方法内容:两个例题,一个正方形,一个折叠问题。例1:已知:如图(4)在正方形ABCD中,F为CD延长线上的一点,CEAF于E,交AD于M 求证:MFD=45目的:解决学生本章中两个难点问题的困惑。例2.如图,矩形纸片ABCD中,AB=3厘米,BC=4厘米,现将A、C重合,使纸片折叠压平,设折痕为EF。试确定重叠部分AEF的面积。注意事项:学生通过例题学习,总结方法,拓展提升。第五环节:总结收获,拓展提升巩固练习1.如图,矩形ABCD的对角线AC、BD相交于点O,AOB=2BOC, 若对角线 AC=6cm,则你能求什么?BADCO角?边?周长?面积?2.如图,菱形ABCD的边长为8cm,BAD=120,你可以求什么?ABCD我想到了:菱形的面积等于它的两条对角线乘积的一半我发现了:当矩形对角线夹角为60时,以等边三角形为突破口;当菱形有一个内角为60时,以等边三角形为突破口3.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合)且PEBC交AB于E,PFCD交AD于F,则阴影部分的面积是 。我想到:平行四边形被对角线分成的四个三角形面积相等4.如图,矩形ABCD的对角线AC、BD交于点O,过点D作DPOC,且 DP=OC,连结CP,试判断四边形CODP的形状ABDCOP5.如图1:正方形ABCD的对角线AC、BD相交于点O,E是AC上的一点,连接EB,过点A作AMBE,垂足M,AM交BD于点FABCDFEMO图2ABCDOFEM图1求证OE=OF;如图2所示,若点E在AC的延长线上,AMEB的延长线于点M,交DB的延长线于点F,其他条件都不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由6.已知BE、CF分别为ABC中B、C的平分线,AMBE于M,ANCF于N求证:MNBCMNEFCBQR内容:交流收获。目的:本节课内容较多,帮助学生总结知识和方法。注意事项:学生通过交流总结,将知识和方法形成系统。四、教学设计反思:本节课为特殊四边形的总结和归纳,要求学生经历从自我总结到交流、升华三种图形的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业智能战略工具创新创业项目商业计划书
- 故宫博物院(选修)说课稿-2025-2026学年初中美术人美版北京2013八年级上册-人美版北京2013
- 社交障碍自助工具创新创业项目商业计划书
- 2025年青少年心理健康教育方案
- 八年级语文上册 第四单元 18 阿西莫夫短文两篇说课稿 新人教版
- 综合探究一 回看走过的路 比较别人的路 远眺前行的路说课稿-2025-2026学年高中思想政治必修1 中国特色社会主义统编版(部编版)
- 第12课 探索生命起源之谜教学设计高中历史人教版2007必修3-人教版2007
- 2024-2025学年高中政治 专题5 2 社会主义市场经济体制的建立和完善说课稿 新人教版选修2
- 2025年新闻记者职业资格考试新闻基础知识模拟试卷及答案解析一
- 2025年7月份三级培训教育考试卷及答案
- AQ7011-2018《高温熔融金属吊运安全规程》
- (高清版)AQ 2013.2-2008 金属非金属地下矿山通风技术规范 局部通风
- 译林版五年级上册英语Unit 2《A new student》单元话题阅读理解专项练习(含答案)
- 创伤急救(中医骨伤科学十三五教材)
- 食材配送服务方投标方案(技术标)
- 《社会学概论》教案
- v60呼吸机的使用与维护
- 论语全文带拼音
- 温病常用诊法舌诊课件
- 盆腔炎性疾病和生殖器结核专家讲座
- 日本蜡烛图技术完整版
评论
0/150
提交评论