《不等式选讲校本教材》修订版全套教案.doc_第1页
《不等式选讲校本教材》修订版全套教案.doc_第2页
《不等式选讲校本教材》修订版全套教案.doc_第3页
《不等式选讲校本教材》修订版全套教案.doc_第4页
《不等式选讲校本教材》修订版全套教案.doc_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学选修课程 南昌一中校本课程 不等式选讲 (修订稿)不等式选讲是根据教育部制订的普通高中数学课程标准(实验)根据课程标准,本专题介绍一些重要的不等式和它们的证明、数学归纳法和它的简单应用。一、内容与要求1回顾和复习不等式的基本性质和基本不等式。2理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:(1)abab;(2)abaccb;(3)会利用绝对值的几何意义求解以下类型的不等式:axbc;axbc;xcxba。3认识柯西不等式的几种不同形式。理解它们的几何意义。(1)证明柯西不等式的向量形式:|。(2)证明:(a2+b2)(c2+d2)(ac+bd)2。(3)证明:。4用参数配方法讨论柯西不等式的一般情况:5用向量递归方法讨论排序不等式。6了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。7会用数学归纳法证明贝努利不等式: (1x)n1nx(x-1,n为正整数)。了解当n为实数时贝努利不等式也成立。8会用上述不等式证明一些简单问题。能够利用平均值不等式、柯西不等式求一些特定函数的极值。9通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。二、内容安排本专题内容分成四章本专题的内容是在初中阶段掌握了不等式的基本概念,学会了一元一次不等式、一元一次不等式组的解法,第一章是“不等式和绝对值不等式”,它是本专题的最基本内容,也是其余三讲的基础本讲的第一部分类比等式的基本性质,从“数与运算”的基本思想出发讨论不等式的基本性质,这是关于不等式在运算方面的一些最基本法则接着讨论基本不等式,介绍了基本不等式的一个几何解释:“直角三角形斜边上的中线不小于斜边上的高”,并把基本不等式推广到三个正数的算术几何平均不等式对于一般形式的均值不等式,则只作简单介绍,不给出证明在此基础上,介绍了它们在解决实际问题中的一些应用,如最基本的等周问题,简单的极值问题等。第二部分讨论了有关绝对值不等式的性质及绝对值不等式的解法绝对值是与实数有关的一个基本而重要的概念,讨论关于绝对值的不等式具有重要的意义绝对值三角不等式是一个基本的结论,教科书首先引导学生借助于实数在数轴上的表示和绝对值的几何意义,引导学生从数的运算角度探究归纳出绝对值三角不等式,接着联系向量形式的三角不等式,得到绝对值三角不等式的几何解释,最后用代数方法给出证明这样,数形结合,引导学生多角度认识这个不等式,逐步深化对它的理解利用绝对值三角不等式可以解决形如的函数的极值问题,教科书安排了一个这样的实际问题。对于解含有绝对值的不等式,教科书只讨论了两种特殊类型不等式的解法,而不是系统地对这个问题进行研究。教科书引导学生探讨了形如或的不等式的解法,以及形如或的不等式的解法学生通过这两类含有绝对值的不等式能够基本学到解含有绝对值的不等式的一般思想和方法。第二章是“证明不等式的基本方法”对于不等式的深入讨论必须首先掌握一些基本的方法,所以本讲内容也是本专题的一个基础内容。本讲通过一些比较简单的问题,介绍了证明不等式的几种常用而基本的方法:比较法、综合法、分析法、反证法和放缩法比较法是证明不等式的最基本的方法,比较法可以分为两种,一种是相减比较法,它的依据是: 另一种是相除比较法,是把不等式两边相除,转化为比较所得商式与1的大小关系,它的依据是:当b0时,在比较法的两种方法中,相减比较法又是最基本而重要的一种方法。在证明不等式的过程中,根据对于不等式的条件和结论不同探索方向作分类,证明方法又可以分为分析法和综合法。在证明不等式时,可以从已知条件出发逐步推出结论的方法是综合法;寻找结论成立的充分条件,从而证明不等式的方法就是分析法证明不等式的方法还可以分为直接证法和间接证法,反证法是一种间接证法它从不等式结论的反面出发,即假设要证明的结论不成立,经过正确的推理,得出矛盾结果,从而说明假设错误,而要证的原不等式结论成立在证明不等式的过程中,有时通过对不等式的某些部分作适当的放大或缩小达到证明的目的,这就是所谓的放缩法教科书对以上方法都结合实例加以介绍。本讲内容对进一步讨论不等式提供了思想方法的基础本章的教学内容中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。第三章是“柯西不等式和排序不等式”本讲介绍两个基本的不等式:柯西不等式和排序不等式,以及它们的简单应用柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用。在介绍了二维形式的柯西不等式的基础上,教科书引导学生在平面直角坐标系中,根据两点间的距离公式以及三角形的边长关系,从几何意义上发现二维形式的三角不等式。接着借助二维形式的柯西不等式证明了三角不等式。在一般形式的柯西不等式的基础上,教科书安排了一个探究栏目,让学生通过探究得出一般形式的三角不等式。排序不等式也是基本而重要的不等式,一些重要不等式可以看成是排序不等式的特殊情形,例如不等式有些重要不等式则可以借助排序不等式得到简捷的证明。教科书在讨论排序不等式时,展示了一个“探究猜想证明应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法。柯西不等式、三角不等式和排序不等式也是数学课程标准正式引入到高中数学教学中。第四章是“数学归纳法证明不等式”本讲介绍了数学归纳法及其在证明不等式中的应用对于某些不等式,必须借助于数学归纳法证明,所以在不等式选讲的专题中安排这个内容是很有必要的。教科书首先结合具体例子,提出寻找一种用有限步骤处理无限多个对象的方法的问题然后,类比多米诺骨牌游戏,引入用数学归纳法证明命题的方法,并分析了数学归纳法的基本结构和用它证明命题时应注意的问题(两个步骤缺一不可)接着举例说明数学归纳法在证明不等式中的应用,特别地,证明了贝努利不等式。本专题的教学重点:不等式基本性质、基本不等式及其应用、绝对值不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用;教学难点:三个正数的算术-几何平均不等式及其应用、绝对值不等式解法;用反证法,放缩法证明不等式;运用柯西不等式和排序不等式证明不等式;本专题教学约需20课时,具体分配如下(仅供参考):第一章不等式和绝对值不等式 一、不等式的基本性质 约1课时二、含有绝对值的不等式的解法绝对值不等式约1课时三含有绝对值的不等式的证明 约1课时四、 指数不等式的解法 约1课时五、 对数不等式的解法 约1课时六、无理不等式的解法 约1课时七 含有参数不等式的解法 约1课时第二 章证明不等式的基本方法一、比较法 约1课时二、综合法与分析法 约2课时三、反证法 约1课时四、放缩法与贝努利不等式 约1课时第三章柯西不等式与排序不等式平均不等式一、柯西不等式 约1课时二、排序不等式: 约1课时三、平均不等式 约1课时四利用平均不等式求最大(小)值约1课时五利用柯西不等式求最大(小)值 约1课时第四章数学归纳法证明不等式一、数学归纳法 (数学归纳法与不等式)约1课时二、用数学归纳法证明不等式约1课时学习总结报告 约1课时三、编写中考虑的几个问题根据课程标准,本专题应该强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力,我们在教科书的编写中努力去实现课程标准的思想。 (一)重视展现不等式的几何背景,力求让学生对重要不等式有直观理解数量关系和空间形式是数学研究的两个重要方面,不等式则是从数量关系的角度来刻画现实世界的。我们一般借助于代数方法证明不等式。代数证明要经过一系列的变形,人们常常不能很直接地看出其中的数量关系。而借助于几何的方法,把不等式中的有关量适当地用图形中的几何量表示出来,则往往能很好地指明不等关系,使学生从几何背景的角度,直观地,从而也是直接地理解不等式。本专题中的重要不等式都有明显的几何背景,教科书注意呈现不等式的几何背景,帮助学生理解不等式的几何本质。如对于是借助于面积关系,绝对值三角不等式是借助于向量和三角形中的边长关系,柯西不等式是借助于向量运算,排序不等式是借助于三角形的面积。这样,逐渐引导学生在面对一个数学问题时能从几何角度去思考问题,找到解决问题的途径 (二)重视数学思想方法的教学数学思想是对于数学知识(数学中的概念、法则、性质、公式、公理、定理、方法等)的理性的、本质的、高度抽象和概括的认识,带有普遍的指导意义,蕴涵于运用数学方法分析处理和解决数学问题的过程之中。数学方法是研究或解决数学问题并使之达到目的的手段、方式、途径或程序。数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深对于具体数学知识的理解和掌握。本专题的内容包涵了丰富的数学思想方法,如应用重要不等式解决实际问题中体现出来的优化思想,在重要不等式的呈现过程中的数形结合思想,在解不等式中体现的转化的思想,函数思想,以及证明不等式的比较法、综合与分析法、放缩法、反证法、数学归纳法,在证明柯西不等式中的配方法等,对于这些数学思想和方法,教科书都及时作归纳和总结,使学生能够结合具体的问题加以理解和体会。 (三)重视引导学习方式和教学方式的改进在目前的中学数学教学实践仍存在一些问题,就学生的学习而言,比较突出的就是被动的接受式的学习,教师偏重于灌输式的教学,启发式的教学原则做得不够。学生的问题意识不强,发现问题的能力不强,独立地解决问题的能力也不强。针对这种情况,教科书重视引导学生提出问题,教科书设置了许多探究栏目,鼓励学生主动探究,引导学生通过类比提出问题及其解决方法,对于数学结论进行特殊化、作推广。例如,在讲述了基本不等式以后,教科书就提出了一个思考问题:“对于三个正数会有怎样的不等式成立呢?”在证明了关于三个正数的均值不等式以后,又直接给出了一般的均值不等式;在证明了二维和三维的柯西不等式以后,就设置了一个探究性问题“对比二维形式三维形式的柯西不等式,你能猜想一般形式的柯西不等式吗?”;再如“一般形式的三角不等式应该是怎样的?如何应用一般形式的柯西不等式证明它?请同学自己探究。” (四)注意发展数学应用意识重要不等式在许多实际问题中可以得到应用,在实际工作中常常能起到节约能源,降低成本,提高效率,加快速度等作用。在本专题中,教科书注意体现数学在实际工作中的广泛应用,编写了一些体现数学应用的例、习题。如经典的等周问题、盒子体积问题、施工队临时生活区选点问题、关于面积和体积的最值问题。通过这些简单的应用问题,使学生体会数学在实践中的作用。四、对教学的几个建议 (一)注意把握教学要求无论是不等式还是数学归纳法,都已经发展成为内容非常丰富的初等数学分支,也出版了一些专门的论著,老师们对于这些内容一般都有丰富的教学经验,很容易把这些内容作一些拓展和补充。所以,在这个专题的教学中,要特别注意把握好教学要求,不要随意提高教学要求,而应该按照数学课程标准的要求来控制教学的深广度。课程标准对于本专题的几个教学内容都明确的教学要求,如:对于解含有绝对值的不等式,只要求能解几种特殊类型的不等式,不要求学生会解各种类型的含有绝对值的不等式。对于数学归纳法在证明不等式的要求也只要求会证明一些简单问题。另外,在不等式和数学归纳法的许多问题中,常常需要一些技巧性比较强的恒等变形,在本专题的教学中则要控制这方面的教学要求,不要使教学陷于过于形式化和复杂的恒等变形的技巧之中,教学中不要补充一些代数恒等变形过于复杂或过于技巧化的问题和习题,以免冲淡对于基本思想方法的理解,也不要引入一些过于专业和形式化、抽象化的数学符号语言,对于数学归纳法的理解,不必要求学生对于方法的理解水平提高到专业数学工作者才需要的数学理论高度,而只需要通过一些学生容易理解的数学问题中加深对于方法的理解和掌握。对于大多数的学生来说,要重视通过比较简单的问题让学生认识、理解和掌握这部分的基本数学思想和方法。当然,对于部分确有余力的学生,仍可以适当对于教学内容作一些拓展,如可以介绍一般的均值不等式的证明及其应用,以使学生对于这一重要不等式有一个比较完整的了解。 (二)要抓住教学重点无论对于基本不等式、柯西不等式、排序不等式,还是解含有绝对值的不等式,不等式证明的方法,或数学归纳法的教学,都要抓住教学重点,抓住基本思想基本方法的教学,力求以简驭繁。对于几个重要不等式,最基本的是二元(二维)的情况,核心的思想也是在二元(二维)的不等式中得到直接的体现;对于不等式的证明的最基本的方法是比较法;解含有绝对值的不等式的最基本和有效的方法是分区间来加以讨论,把含有绝对值的不等式转化为不含绝对值的不等式;让学生能对数学归纳法思想真正理解和掌握,就能使学生灵活地加以应用。这样,学生就能掌握本专题最基本也是最重要的知识。第一章 不等式和绝对值不等式第一节 不等式的基本性质课 题: 不等式的基本性质目的要求: 掌握不等式的基本性质重点难点:不等式的基本性质教学过程:一、引入:不等关系是自然界中存在着的基本数学关系。列子汤问中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。而且,不等式在数学研究中也起着相当重要的作用。本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。还可从引言中实际问题出发,说明本章知识的地位和作用。生活中为什么糖水加糖甜更甜呢?转化为数学问题:a克糖水中含有b克糖(ab0),若再加m(m0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为,加入m克糖 后的糖水浓度为,只要证即可。怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。2、不等式的基本性质:、如果ab,那么ba,如果bb。(对称性)、如果ab,且bc,那么ac,即ab,bcac。、如果ab,那么a+cb+c,即aba+cb+c。推论:如果ab,且cd,那么a+cb+d即ab, cd a+cb+d、如果ab,且c0,那么acbc;如果ab,且c0,那么acb 0,那么 (nN,且n1)、如果ab 0,那么 (nN,且n1)。三、典型例题:例1、已知ab,cb-d例2已知ab0,c,对一切实数都成立,求实数的取值范围。例6设,解关于的不等式: 分析:本题是一个含有参数的不等式,解这类不等式时常要就参数的取值进行讨论。例6 已知,且,求实数的范围三、小结:四、练习:解不等式1、 2、3、 . 4、 . 5、 6、 .五、作业1:已知不等式的解集为,求的值 2解关于的不等式:解关于的不等式;3.|x2-9|x+3.4.解不等式|x23|x|3|1.5.求使不等式|x4|+|x3|a有解的a的取值范围。6.,解关于x的不等式: 第三节含有绝对值的不等式的证明课 题: 含有绝对值的不等式的证明目的要求: 掌握含有绝对值的不等式的证明重点难点: 含有绝对值的不等式的证明的掌握教学过程:一、引入:证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1) (2)(3) (4)请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理?实际上,性质和可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明对于任意实数都成立即可。我们将在下面的例题中研究它的证明。现在请同学们讨论一个问题:设为实数,和哪个大?显然,当且仅当时等号成立(即在时,等号成立。在时,等号不成立)。同样,当且仅当时,等号成立。含有绝对值的不等式的证明中,常常利用、及绝对值的和的性质。二、典型例题:例1、证明 (1), (2)。证明(1)如果那么所以如果那么所以 (2)根据(1)的结果,有,就是,。 所以,。例2、证明 。例3、证明 。思考:如何利用数轴给出例3的几何解释?(设A,B,C为数轴上的3个点,分别表示数a,b,c,则线段当且仅当C在A,B之间时,等号成立。这就是上面的例3。特别的,取c0(即C为原点),就得到例2的后半部分。)探究:试利用绝对值的几何意义,给出不等式的几何解释?含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。例4、已知 ,求证 证明 (1), (2)由(1),(2)得:例5、已知 求证:。证明 ,由例1及上式,。注意: 在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。三、小结:四、练习:1、已知求证:。2、已知求证:。五、作业:链接:不等式的图形借助图形的直观性来研究不等式的问题,是学习不等式的一个重要方法,特别是利用绝对值和绝对值不等式的几何意义来解不等式或者证明不等式,往往能使问题变得直观明了,帮助我们迅速而准确地寻找到问题的答案。关键是在遇到相关问题时,能否准确地把握不等式的图形,从而有效地解决问题。我们再来通过几个具体问题体会不等式图形的作用。1解不等式。题意即是在数轴上找出到与的距离之和不大于到点的距离的所有流动点。首先在数轴上找到点,(如图)。 -1 0 1 2 3从图上判断,在与之间的一切点显示都合乎要求。事实上,这种点到与的距离和正好是1,而到的距离是。现在让流动点由点向左移动,这样它到点的距离变,而到点与的距离增大,显然,合乎要求的点只能是介于与之间的某一个点。由可得再让流动点由点向右移动,虽然这种点到与的距离的和及到的距离和都在增加,但两相比较,到与的距离的和增加的要快。所以,要使这种点合乎要求,也只能流动到某一点而止。由可得从而不等式的解为2画出不等式的图形,并指出其解的范围。先考虑不等式在平面直角坐标系内第一象限的情况。在第一象限内不等式等价于: ,.其图形是由第一象限中直线下方的点所组成。同样可画出二、三、四象限的情况。从而得到不等式的图形是以原点O为中心,四个等点分别在坐标轴上的正方形。不等式解的范围一目了然。探究:利用不等式的图形解不等式 1. ; 2 A组1解下列不等式:(1) (2) 1(3) (4) 2解不等式: (1) (2)3解不等式: (1) (2)4利用绝对值的几何意义,解决问题:要使不等式1 整理得:解之,不等式的解集为x|-3x2或 不等式的解集为x|x2或例3、解不等式: (当a1时 当0a1时)例4、解不等式: (-1x3)三、小结:四、练习:五、作业:作业: 1.解不等式2.解关于x的不等式: 3不等式 的解集为 ;第五节对数不等式的解法课 题: 对数不等式的解法目的要求: 掌握对数不等式的解法重点难点:对数不等式的解法的掌握教学过程:一、引入:二、典型例题:例1、解不等式。解:原不等式等价于 或 解之得:4x5原不等式的解集为x|41时有 (其实中间一个不等式可省)当0a1时不等式的解集为;当0a1时有0xa 当0aa原不等式的解集为x|0x1或x|xa, 0a1例4、解不等式。解:两边取以a为底的对数:当0a1时原不等式化为: 原不等式的解集为 或三、小结:四、练习:解下列不等式 1 (-2x1或4x7)2当,求不等式: (ax1)3,求证: 4 (-1x0且a1时,解关于x的不等式:1+.2.设对所有实数x,不等式恒成立,试求a的取值范围3不等式的解集为 第六节无理不等式的解法课 题: 无理不等式的解法目的要求: 掌握无理不等式的解法重点难点:理不等式的解法的四种类型教学过程:一、引入:1、无理不等式的类型:、二、典型例题:例1、解不等式解:根式有意义 必须有: 又有 原不等式可化为 两边平方得: 解之:例2、解不等式解:原不等式等价于下列两个不等式组得解集的并集: :解: 解:原不等式的解集为例3、解不等式解:原不等式等价于特别提醒注意:取等号的情况例4、解不等式解 :要使不等式有意义必须:原不等式可变形为 因为两边均为非负 即x+10 不等式的解为2x+10 即 例5、 解不等式例6、解不等式解:定义域 x-10 x1原不等式可化为:两边立方并整理得:在此条件下两边再平方, 整理得:解之并联系定义域得原不等式的解为三、小结:四、练习:解下列不等式1 2 3 ()s4 5 五、作业: 1.不等式的解集是 ( )(A) (B) (C) (D)2.解关于x的不等式3.解不等式:4.若不等式的解集是(0,2),求参数a的值.第七节 含有参数不等式的解法课 题: 含有参数不等式的解法目的要求:掌握含有参数不等式的解法重点难点:含有参数不等式的解法中的分类讨论教学过程:一、引入:二、典型例题:例1、解关于x的不等式 例2、解关于x的不等式 例3、解关于x的不等式 例4、解关于x的不等式 例5、满足的x的集合为A;满足的x的集合为B。 1 、若AB 求a的取值范围 2 、若AB 求a的取值范围 3 、若AB为仅含一个元素的集合,求a的值。例6、方程有相异两实根,求a的取值范围。三、小结:四、练习:解关于的不等式若不等式对满足的所有都成立,求的取值范围五、作业:1 2 若 求a的取值范围 (a1)3 4若方程的两根都对于2,求实数m的范围。 第二章 证明不等式的基本方法第一节不等式的证明方法之一:比较法课 题: 不等式的证明方法之一:比较法目的要求: 掌握不等式的证明方法之一:比较法重点难点: 作差和作商比较法的灵活掌握教学过程:一、引入:要比较两个实数的大小,只要考察它们的差的符号即可,即利用不等式的性质:二、典型例题:例1、设,求证:。例2、若实数,求证:例3、已知求证注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。例4、甲、乙两人同时同地沿同一路线走到同一地点。甲有一半时间以速度行走,另一半时间以速度行走;乙有一半路程以速度行走,另一半路程以速度行走。如果,问甲、乙两人谁先到达指定地点。例5、设求证;对任意实数,恒有 (1)三、小结:四、练习:1比较下面各题中两个代数式值的大小:(1)与;(2)与.2已知 求证:(1) (2)五、作业:1已知a0,比较与的大小2设x1,比较x3与x2-x+1的大小3若,求证4比较a4-b4与4a3(a-b)的大小解: a4-b4 - 4a3(a-b)=(a-b)(a+b)(a2+b2) -4a3(a-b)= (a-b)(a3+ a2b+ab2+b3-4a3)= (a-b)(a2b-a3)+(ab3-a3)+(b3-a3)= - (a-b)2(3a3+2ab+b2) = - (a-b)2 (当且仅当db时取等号) a4-b44a3(a-b)。5比较(a+3)(a-5)与(a+2)(a-4)的大小6已知x0,比较(x2+1)2与x4+x2+1的大小7如果x0,比较与的大小说明:“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。阅读材料:琴生不等式例5中的不等式有着重要的数学背景,它与高等数学中的一类凸函数有着密切的关系,也是琴生(Jensen)不等式的特例。琴生在1905年给出了一个定义:设函数的定义域为a,b,如果对于a,b内任意两数,都有 (1)则称为a,b上的凸函数。若把(1)式的不等号反向,则称这样的为a,b上的凹函数。凸函数的几何意义是:过曲线上任意两点作弦,则弦的中点必在该曲线的上方或在曲线上。其推广形式是:若函数的是a,b上的凸函数,则对a,b内的任意数,都有 (2) 当且仅当时等号成立。一般称(2)式为琴生不等式。 更为一般的情况是:设是定义在区间a,b上的函数,如果对于a,b上的任意两点,有其中,则称是区间a,b上的凸函数。如果不等式反向,即有则称是a,b上的凹函数。其推广形式 ,设,是a,b上的凸函数,则对任意有,当且仅当时等号成立。若是凹函数,则上述不等式反向。该不等式称为琴生(Jensen)不等式。把琴生不等式应用于一些具体的函数,可以推出许多著名不等式。 第二节 不等式的证明方法之二:综合法与分析法课 题: 不等式的证明方法之二:综合法与分析法目的要求: 掌握不等式的证明方法之二:综合法与分析法重点难点:综合法与分析法教学过程:一、引入:综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点。所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式。而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中。前一种是“由因及果”,后一种是“执果索因”。打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。以前得到的结论,可以作为证明的根据。特别的,是常常要用到的一个重要不等式。二、典型例题:例1、都是正数。求证:证明:由重要不等式可得本例的证明是综合法。例2、设,求证证法一 分析法要证成立.只需证成立,又因,只需证成立,又需证成立,即需证成立.而显然成立. 由此命题得证。证法二 综合法 注意到,即,由上式即得, 从而成立。议一议:根据上面的例证,你能指出综合法和分析法的主要特点吗?例3、已知a,b,m都是正数,并且求证: (1)证法一 要证(1),只需证 (2)要证(2),只需证 (3)要证(3),只需证 (4)已知(4)成立,所以(1)成立。上面的证明用的是分析法。下面的证法二采用综合法。证法二 因为 是正数,所以 两边同时加上得两边同时除以正数得(1)。读一读:如果用或表示命题P可以推出命题Q(命题Q可以由命题P推出),那么采用分析法的证法一就是 (1)而采用综合法的证法二就是 如果命题P可以推出命题Q,命题Q也可以推出命题P,即同时有,那么我们就说命题P与命题Q等价,并记为在例2中,由于都是正数,实际上 例4、证明:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为,则周长为的圆的半径为,截面积为;周长为的正方形为,截面积为。所以本题只需证明。证明:设截面的周长为,则截面是圆的水管的截面面积为,截面是正方形的水管的截面面积为。只需证明:。为了证明上式成立,只需证明。两边同乘以正数,得:。因此,只需证明。上式显然成立,所以 。这就证明了:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。例5、证明:。证法一 因为 (2) (3) (4)所以三式相加得 (5)两边同时除以2即得(1)。证法二 因为所以(1)成立。例6、证明: (1)证明 (1) (2)(3) (4) (5)(5)显然成立。因此(1)成立。例7、已知都是正数,求证并指出等号在什么时候成立?分析:本题可以考虑利用因式分解公式 着手。证明: = = 由于都是正数,所以而,可知 即(等号在时成立)探究:如果将不等式中的分别用来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式: ,其中是互不相等的正数,且.三、小结:解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。这些方法,也是利用综合法和分析法证明不等式时常常用到的技巧。四、练习:1、已知求证:2、已知求证3、已知求证4、已知求证:(1)(2) 5、已知都是正数。求证:(1) (2)6、已知都是互不相等的正数,求证五、作业:已知:,求证: 若,求证:已知,求证:若,,求证:;5已知是正常数,求证:,并指出等号成立的条件;利用的结论求函数()的最小值,并指出取最小值时 的值第三节 不等式的证明方法之三:反证法课 题: 不等式的证明方法之三:反证法目的要求: 掌握不等式的证明方法之三:反证法重点难点:反证法教学过程:一、引入:前面所讲的几种方法,属于不等式的直接证法。也就是说,直接从题设出发,经过一系列的逻辑推理,证明不等式成立。但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。其中,反证法是间接证明的一种基本方法。反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。具体地说,反证法不直接证明命题“若p则q”,而是先肯定命题的条件p,并否定命题的结论q,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。利用反证法证明不等式,一般有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。二、典型例题:例1、已知,求证:(且)例1、设,求证证明:假设,则有,从而 因为,所以,这与题设条件矛盾,所以,原不等式成立。例2、设二次函数,求证:中至少有一个不小于.证明:假设都小于,则 (1) 另一方面,由绝对值不等式的性质,有 (2) (1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论