




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验与探究丰富多彩的正方形教学设计福建省南平市第三中学:陈邦仪一、内容和内容解析1内容:实验:探究正方形的中心对称性;2内容解析:本节课是学习完四边形知识之后的安排的实验与探究部分,主要是让学生通过实验与探究活动进一步感知正方形的特殊性。本课的实验活动有一定的难度,让学生从图形旋转中体验正方形的中心对称性,是为九年级进一步学习旋转变换和中心对称作适当铺垫,引导学生从旋转的角度对正方形中心对称性进行再认识,在探究活动中引导学生经历从直观到抽象的认知过程,体验从特殊到一般的研究方法,同时还注重渗透化一般为特殊、化归、割补等思想方法,及几何证明严谨性的训练。二、目标和目标解析1教学目标:探究正方形的中心对称性,理解化一般为特殊的思想方法,并会用正方形的中心对称性解决相关问题; 2目标解析:能通过探究过程理解正方形的中心对称性,进而利用正方形的中心对称性解决与之相关的问题;三、教学问题诊断分析:针对实验而言,学生已经全面学习了四边形的有关知识,但对于正方形的重要特性中心对称性缺乏基本的认识。针对学生的学习过程中存在的困难,本节课选用教材P62页第17题作为铺垫,帮助学生形成对正方形的中心对称性的初步认识,再结合引入环节中的小组活动拼正方形,进一步强化对图形中心对称性的感知,然后进入实验的探究活动,借助动画演示,帮助学生从旋转的角度体验正方形的中心对称性,渗透在研究问题时经历从特殊到一般的探究过程,在解决问题时理解化一般为特殊的思想方法的学习模式。因此,确定本节课的教学重点为正方形的中心对称性的探究活动的结论;教学难点为利用正方形的中心对称性解决与之相关的问题。四、教学条件支持分析:根据本节课的特点,为了减轻学生学习负担,本节课采用了实物展示和动画演示相结合的呈现方式,设计了逐层递进的变式练习,运用了小组合作的学习模式,组织学生进行观察、操作、想象、交流、归纳等活动,最大限度的帮助学生分清要点、把握重点、突破难点、消除疑点,以保证教学活动的顺利开展。五、教学设计:(一)情景引入:学生活动:将正方形分割成面积相等的四个部分,请你在图中添加两条直线,设计出分割方案【设计意图】(1) 初步感知正方形的中心对称性; (2)为解决后面的问题做适当的铺垫。(二)探究活动: 环节1 将正方形分割成等面积的四部分,请在作业纸上作两条直线,设计出分割方案。提问:1.你是怎样设计的?【设计意图】请学生交流设计方案,为发现共性作铺垫。 2.为什么分的四个部分面积相等?【设计意图】通过说理过程,加深对分割方案的理解。 3.大家设计的分割方法有什么共同点? 【设计意图】引导学生对图形形成共性认识,从而揭示问题的本质。小结:经过正方形对角线的交点O,且互相垂直的两条直线将正方形分割成等面积的四部分.环节2 例题,如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相同,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积是否发生变化,为什么?1. 演示旋转过程,引导学生发现旋转过程中的特殊情况。实验1:当OA1与OA重合,OC1与OB重合时,重叠部分的面积与一个正方形的面积有何关系?实验2:当OA1AB于点E,OC1BC于点F时,它们之间的关系会改变吗?实验2图实验1图【设计意图】体会图形旋转时面积的不变性,经历从旋转的特殊位置发现一般结果的过程,了解化一般为特殊的思想方法。 2.实验3:当OA1 与AB交于点E,OC1与BC交于点F时上面的结论是否成立?若成立,请证明,若不成立,请说明理由.【设计意图】(1)通过学生对问题的证明,培养学生严谨的数学思维;(2)引导学生发现问题本质就是OA1与OC1是过对角线交点O且互相垂直的线段,将问题转化成已解决的问题,体现数学的化归思想的应用,也是对此类问题加深理解。环节3 小试牛刀 将一块矩形的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块矩形绕直角顶点顺时针方向旋转(旋转角小于90)如图乙(1)试判断ODE和OCF是否全等,并证明你的结论(2)若正方形ABCD的对角线长为10,试求矩形和正方形重合部分的面积【设计意图】 (1)通过学生对三角形全等的证明,培养学生严谨的数学思维。 (2)引导学生解决问题时,考虑化一般为特殊的思想方法。体会用割补法对不规则图形进行图形变形的必要性,为解决问题作铺垫。环节4 风采展示如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N若正方形ABCD的变长为a,则重叠部分四边形EMCN的面积为() A. B. C. D. 【设计意图】 通过这道选择题的设置,激起学生运用知识解决问题的高潮。继续考虑化一般为特殊的思想方法。加强勾股定理的计算,特别是字母系数的计算。思维导图:观察从特殊情况发现结论,形成初步认识特殊图形一般化发现一般性结论(过正方形对角线的交点,且互相垂直的两条直线将正方形等分成4个部分)归纳一般图形运动课本例题从运动过程中发现特殊图形利用特殊图形证明一般结论理解变式练 习1应用化一般为特殊,解决问题练 习2应用化一般为特殊,解决问题(三)课堂小结请学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年合肥肥西县桃花初级中学教师招聘考试试题(含答案)
- 法院考试面试题及答案
- 湘西中考试题及答案
- 2025年灌南县教育系统招聘教师考试笔试试题(含答案)
- 校保卫处消防知识培训课件
- 急救技能知识模拟试题库及答案
- 饭店服务与管理试题库含答案
- 医院突发事件应急处理培训考核试题及答案
- 急救药品考试题(含答案)
- 放射医学技术(士、师)考试题库含答案
- 微课(比喻句)讲课教案课件
- 银行间本币市场业务简介
- 2023年厦门东海职业技术学院辅导员招聘考试笔试题库及答案解析
- 辽阳市出租汽车驾驶员从业资格区域科目考试题库(含答案)
- (完整版)剑桥通用五级PET考试练习题
- DB32- 4385-2022《锅炉大气污染物排放标准》
- 2022年西安陕鼓动力股份有限公司招聘笔试题库及答案解析
- 钢丝绳课件-图文
- 城市轨道交通安全管理课件(完整版)
- 健康照护教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案课件合集
- 被执行人财产申报表
评论
0/150
提交评论