




免费预览已结束,剩余28页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学复习知识梳理 第一单元 实 数一、实数的概念及分类 1.实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2.有理数的分类或注:小数是分数。3.无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率,或化简后含有的数,如+8等;(3)有特定结构的数,如0.1010010001等;(4)某些三角函数值,如sin60o等二.实数的倒数、相反数和绝对值 1.相反数:只有符号不同的两个数叫做互为相反数,从数轴上看,互为相反数的两个数所对应的点关于原点对称,若a+b=0a、b互为相反数,反之亦成立.零的相反数是零2.绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。任何数的绝对值总是非负数,即|a|0,若|a|=a,则a0;若|a|=-a,则a0。 3.倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4.数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5.估算 (教材第34页)三、平方根、算数平方根和立方根 1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表示方法:记作“”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2.平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表示方法:正数a的平方根记做“”,读作“正、负根号a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。 注意的双重非负性: 03.立方根:一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:,这说明三次根号内的负号可以移到根号外面。四.实数大小的比较 1.实数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数比较大小,绝对值大的反而小。2.实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。0-1-2-3123越来越大(2)求差比较:设a、b是实数,.(3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法:设a、b是两负实数,则。五.算术平方根有关计算(二次根式)1.含有二次根号“”;被开方数a必须是非负数。2.性质:(1) (2) (3) ()(4) ()3.最简二次根式:运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六.实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。异号两数相加,绝对值值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。一个数同0相加,仍得这个数.互为相反数的两个数相加和为0.有理数减法法则:减去一个数,等于加上这个数的相反数!有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与0相乘,积仍为0.注意:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。有理数除法法则:指数底数幂a.两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0。b.除以一个数等于乘以这个数的倒数注意:0不能作除数。有理数的乘方:求n个相同因数a的积的运算叫做乘方。正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律: 加法结合律:乘法交换律: 乘法结合律:乘法对加法的分配律:8.科学记数法一般地,一个大于10的数可以表示成(,n是正整数)的形式,这种记数方法叫做科学记数法。(n=整数位数-1)一个绝对值小于1的数可以表示成(,n是负整数)的形式, 如:0.00000721=7.21(第一个非零数字前零的个数) 第二单元 整式及其运算一整式的加减1.代数式用运算符号(加、减、乘、除、乘方、开方等)把数和字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。注意:代数式中除了含有数、字母和运算符号外,还可以有括号; 代数式中不含有“=、b,那么a+cb+c, a-cb-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果ab,并且c0,那么acbc, .性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果ab,并且c0,那么acb大大取大xa小小取小axb大小小大中间找无解大大小小解不了(是空集) 四。分式与分式方程1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,其中A称为分式的分子,B称为分式的分母。对于任意一个分式,坟墓都不能为零。2.注意事项(1)分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。(2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。(3)分式的值为零的条件:分子为零且分母不为零3.分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。用式子表示 注意:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。(2)应用基本性质时,要注意C0,以及隐含的B0。(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。4.分式的乘除:两个分式相乘,把分子相乘的积作为积的分子,分母相乘的积作为积的分母;两个分式相除,把除式的分子、分母颠倒位置后再与被除式相乘.即: , 5. 分式乘方:把分子、分母分别乘方. 即: 逆向运用,当n为整数时,仍然有成立.6.最简分式:分子与分母没有公因式的分式,叫做最简分式.7.分式的通分和约分:关键先是分解因式(1)分式的约分:利用分式的基本性质,把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。(2)最简分式:分子与分母没有公因式的分式(3)分式的通分:根据分式的基本性质,把几个异分母的分式化成同分母的分式,这一过程称为分式的通分。(4)最简公分母:最简单的公分母简称最简公分母。8.分式的加减:(1)同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是:(2)异号分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算;上述法则用式子表示是:9.分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。10.分式方程:分母中含未知数的方程叫做分式方程。 增根:分式方程的增根必须满足两个条件:(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的根。11.分式方程的解法:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为,这样就产生了增根,因此分式方程一定要验根。分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 12.列分式方程解应用题:步骤:(1)审题(2)设未知数(3)列方程(4)解方程(5)检验(6)写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。应用题基本类型;a.行程问题:b.数字问题c.工程问题 d. 顺水逆水问题 e相遇问题 f追及问题g流水问题 h浓度问题m利润与折扣问题 五一元二次方程1.定义:只含有一个未知数的整式方程,且都可以化为(a、b、c为常数,a0)的形式,这样的方程叫一元二次方程。把(a、b、c为常数,a0)称为一元二次方程的一般形式,ax2、bx、c分为二次项、一次项和常数项;a、b分为二次项系数和一次项系数。2.近似解(夹逼法):教材第34页3.解法(三种)(1)配方法: 配方法解一元二次方程的基本步骤:把方程化成一元二次方程的一般形式;将二次项系数化成1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成(x+m)2=n(n0)的形式;两边开方求其根。关键:方程两边加上一次项系数一半的平方(2)公式法: (b2-4ac0 )(注意:在找a、b、c时须先把方程化为一般形式) 根的判别式 : 当b2-4ac0时,方程有两个不等的实数根; 当b2-4ac=0时,方程有两个相等的实数根; 当b2-4ac0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k0,当x时,y随x的增大而增大。若a0,则当x时,y随x的增大而减小。最值:若a0,则当x=时,;若a0 抛物线与x轴有2个交点; =0 抛物线与x轴有1个交点; 0 抛物线与x轴有0个交点(无交点);(3)当0时,设抛物线与x轴的两个交点为A、B,则这两个点之间的距离:化简后即为: 这就是抛物线与x轴的两交点之间的距离公式。第五单元 基本图形一丰富的图形世界1.基本平面图形:平面图形由点、先、面构成.点动成线,线动成面,面动成体。(1)线段、射线、直线名称图形表示方法端点长度直线直线AB(或BA)直线l无端点无法度量射线射线OM1个无法度量线段线段AB(或BA)线段l2个可度量长度a直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)b.线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)c.两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。线段的比较:度量法、叠合法线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。 线段的垂直平分线(简称中垂线):定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。作法:作已知线段的垂直平分线。已知:线段AB求作:AB的垂直平分线。作法:()分别以A、B为圆心,大于AB/2的长为半径作弧两弧相交于点C和D;()作直线CD则直线CD就是线段AB的垂直平分线。角平分线的性质:1.角是轴对称图形,角平分线所在的直线是它的对称轴。2.性质:角平分线上的点到这个角的两边的距离相等。 判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。3.作已知角的角平分线。已知:如图,AOB,求作:射线OP,使AOPBOP(即OP平分AOB)。作法:(1)在OA和OB分别截取OM,ON使OM=ON(2)分别以M、为圆心,大于 的长为半径作弧,两弧交AOB内于;(3)作射线OP。射线OP就是AOB的角平分线。角的相关知识:a.定义:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。b.角的表示角的表示方法有以下四种:用数字表示单独的角,如1,2,3等。用小写的希腊字母表示单独的一个角,如,等。用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如B,C等。用三个大写英文字母表示任一个角,如BAD,BAE,CAE等。注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。c.角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“”表示,1度记作“1”,n度记作“n”。把1的角60等分,每一份叫做1分的角,1分记作“1”。把1 的角60等分,每一份叫做1秒的角,1秒记作“1”。1=60,1=60” d.角的比较:度量法、叠合法e.角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。f.角的性质g.平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。1平角=1800 1周角=3600 直角=900直角钝角平角2.生活中的立体图形 圆柱柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、(按名称分) 锥 圆锥棱锥球体:由球面围成的(球面是曲面)圆柱:圆柱的表面展开图是由两个相同的圆形和一个长方形连成。圆锥:圆锥的表面展开图是由一个圆形和一个扇形连成。3.棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。棱柱的上、下底面的形状相同,侧面的形状都是长方形根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱它们底面图形的形状分别为三角形、四边形、五边形、六边形长方体和正方体都是四棱柱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。4.正方体的平面展开图:11种(重点)1-4-1型:6种2-3-1型:3种 2-2-2型:1种3-3型:1种正方体截面:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。二.两条直线的位置关系1.两条直线的位置关系及相关概念(1)位置关系:在同一平面内,两条直线的位置关系只有两种:相交;平行(表示符号“”)(2)对顶角:我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。对顶角的性质:对顶角相等。(3)余角:如果两个角的和是900,那么称这两个角互为余角。同角或等角的余角相等。(4)补角:如果两个角的和是1800,那么称这两个角互为补角。同角或等角的补角相等。(了解邻补角)2.垂线定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足表示符号“”。符号语言记作:如图所示:ABCD,垂足为O:性质1:过一点有且只有一条直线与已知直线垂直性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。3.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离3.两直线平行性质、判定(1)判定:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。 两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。 两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。 推论:平行于同一条直线的两直线平行。(2)性质:(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。(3)平行公理:经过直线外一点,有且只有一条直线与这条直线平行 三成比例线段1. 线段的比:如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成.2.比例线段 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.3.比例的性质(1)基本性质如果a:b=c:d,那么ad=bc如果ad
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学会放弃700字高中高二作文(12篇)
- 独自放学回家作文13篇范文
- 读西游记有感:谈团队合作的力量读后感议论文(10篇)
- 我最喜欢的一张照片350字(14篇)
- 永远的回忆小学生作文14篇
- 2025年西班牙语DELE口语实战试卷:旅游摄影技巧与创意分享
- 小班完整儿童课件
- 宽容作文500字8篇范文
- 观后感初二上册作文(12篇)
- 走进大自然的怀抱童话和写景结合类作文9篇
- 《数字化测图》教学教案
- 铝板拆除施工方案
- 美容外科注射美容技术操作规范2023版
- 财政投资项目评审服务投标方案(技术方案)
- 砭石热疗的理论基础与临床应用
- 《理想信念的内涵及重要性》教学教案
- 地沟供热管网施工方案
- 利用PDCA提高预诊分诊率
- 雷达气象-南京大学中国大学mooc课后章节答案期末考试题库2023年
- 关于若干历史问题的决议(1945年)
- 汽轮机高压抗燃油系统培训教材
评论
0/150
提交评论