




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省12市2014年中考试题分类汇编专题一、选择题1.(2014绵阳市,第 9题,3分)下列命题中正确的是()A对角线相等的四边形是矩形B对角线互相垂直的四边形是菱形C对角线互相垂直平分且相等的四边形是正方形D一组对边相等,另一组对边平行的四边形是平行四边形2(2014资阳市,第 6题,3分)下列命题中,真命题是()A一组对边平行,另一组对边相等的四边形是平行四边形B对角线互相垂直的平行四边形是矩形C对角线垂直的梯形是等腰梯形D对角线相等的菱形是正方形3.(2014攀枝花市,第 7题,3分)下列说法正确的是()A多边形的外角和与边数有关B平行四边形既是轴对称图形,又是中心对称图形C当两圆相切时,圆心距等于两圆的半径之和D三角形的任何两边的和大于第三边4.(2014攀枝花市,第 9题,3分)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫,从点A开始按ABCDAEFGAB的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A点F B点E C点A D点C中.考.资.源.网5(2014宜宾市,第 7题,3分) 如图,将n个边长都为2的正方形按如图所示摆放,点A1, A2,An分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )源:W A n B n1 C ()n1 Dn二、填空题中.考.资.源.网1(2014巴中市,第 16题,3分) 菱形的两条对角线长分别是方程x214x+48=0的两实根,则菱形的面积为2(2014宜宾市,第 12题,3分) 菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是 cm3.(2014绵阳市,第 16题,4分)如图,O的半径为1cm,正六边形ABCDEF内接于O,则图中阴影部分面积为cm2(结果保留)4.(2014绵阳市,第 17题,4分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,EAF=45,ECF的周长为4,则正方形ABCD的边长为 5. (2014成都市,第 24题,4分) 如图,在边长为2的菱形ABCD中,A=60,M是AD边的中点,N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC. 则AC长度的最小值是 .三、解答题1.(2014遂宁市,第 20题,9分)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE过点C作CFBD交线段OE的延长线于点F,连结DF求证:(1)ODEFCE;(2)四边形ODFC是菱形2. (2014成都市,第 20题,10分) 如图,矩形ABCD中,AD=2AB,E是AD边上一点, (为大于2的整数),连接BE,作BE的垂直平分线分别交AD、BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当(为常数),时,求FG的长;(3)记四边形BFEG的面积为,矩形ABCD的面积为,当时,求的值.(直接写出结果,不必写出解答过程)3(2014达州市,第 19题,7分) 四张背面完全相同的纸牌(如图,用、表示),正面分别写有四个不同的条件小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张中.考.资.源.网(1)写出两次摸牌出现的所有可能的结果(用、表示);(2)以两次摸出的牌面上的结果为条件,求能判断四边形ABCD为平行四边形的概率一、选择题1(2014成都市,第 10题,3分)在圆心角为120的扇形AOB中,半径OA=6cm,则扇形AOB的面积是( ).资.源.网(A) (B) (C) (D)2(2014自贡市,第 8题,4分)一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A60B120C150D1803(2014自贡市,第 10题,4分)如图,在半径为1的O中,AOB=45,则sinC的值为() ABCD4(2014资阳市,第 9题,3分)如图,扇形AOB中,半径OA=2,AOB=120,C是的中点,连接AC、BC,则图中阴影部分面积是()A2B2CD5.(2014遂宁市,第 7题,4分)若O1的半径为6,O2与O1外切,圆心距O1O2=10,则O2的半径为()A4 B16 C8 D4或166(2014宜宾市,第8题,3分) 已知O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:若d5,则m=0;若d=5,则m=1;若1d5,则m=3;若d=1,则m=2;若d1,则m=4中.考.资.源.网其中正确命题的个数是( ) A 1 B 2 C 4 D 57.(2014绵阳市,第 12题,3分)如图,AB是半圆O的直径,C是半圆O上一点,OQBC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是()A=B=C=D=二、填空题1(2014巴中市,第 17题,3分)如图,已知A、B、C三点在O上,ACBO于D,B=55,则BOC的度数是 2.(2014遂宁市,第 13题,4分)已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是(结果保留)3(2014巴中市,第15题,3分) 若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是4(2014资阳市,第 14题,3分)已知O1与O2的圆心距为6,两圆的半径分别是方程x25x+5=0的两个根,则O1与O2的位置关系是 5(2014南充市,第 14题,3分)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB8,则图中阴影部分的面积是_(结果保留)6(2014自贡市,第 14题,4分)一个边长为4cm的等边三角形ABC与O等高,如图放置,O与BC相切于点C,O与AC相交于点E,则CE的长为cm 7(2014成都市,第 14题,4分)如图,AB是O的直径,点C在AB的延长线上,CD切O于点D,连接AD,若A=25,则C = 度.8(2014宜宾市,第 15题,3分)如图,已知AB为O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若ABC=30,则AM= 三、解答题1.(2014攀枝花市,第 21题,8分)如图,ABC的边AB为O的直径,BC与圆交于点D, D为BC的中点,过D作DEAC于E(1)求证:AB=AC;(2)求证:DE为O的切线;(3)若AB=13,sinB=,求CE的长2.(2014绵阳市,第 23题,12分)如图,已知ABC内接于O,AB是O的直径,点F在O上,且满足,过点C作O的切线交AB的延长线于D点,交AF的延长线于E点(1)求证:AEDE;(2)若tanCBA=,AE=3,求AF的长3.(2014遂宁市,第 24题,10分)已知:如图,O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD(1)求证:PD是O的切线(2)求证:PD2=PBPA(3)若PD=4,tanCDB=,求直径AB的长4(2014资阳市,第 21题,9分)如图,AB是O的直径,过点A作O的切线并在其上取一点C,连接OC交O于点D,BD的延长线交AC于E,连接AD(1)求证:CDECAD;(2)若AB=2,AC=2,求AE的长5(2014巴中市,第 29题,10分)如图,已知在ABC中,AD是BC边上的中线,以AB为直径的O交BC于点D,过D作MNAC于点M,交AB的延长线于点N,过点B作BGMN于G(1)求证:BGDDMA;(2)求证:直线MN是O的切线6(2014宜宾市,第 23题,10分) 如图,在ABC中,以AC为直径作O交BC于点D,交AB于点G,且D是BC中点,DEAB,垂足为E,交AC的延长线于点F(1)求证:直线EF是O的切线;(2)若CF=5,cosA=,求BE的长 7(2014达州市,第 21题,8分) 如图,直线PQ与O相交于点A、B,BC是O的直径,BD平分CBQ交O于点D,过点D作DEPQ,垂足为E(1)求证:DE与O相切;(2)连结AD,己知BC=10,BE=2,求sinBAD的值1(2014资阳市,第 15题,3分)如图,在边长为4的正方形ABCD中, E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则BEQ周长的最小值为 2.(2014攀枝花市,第 24题,12分)如图,抛物线y=ax28ax+12a(a0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(6,0),且ACD=90中.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P,使得PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止设直线m与折线DCA的交点为G,与x轴的交点为H(t,0)记ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围3.(2014南充市,第 24题,8分) 如图,已知AB是O的直径,BP是O的弦,弦CDAB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG=BFBO.试证明BG=PG.中.考.资.源.网(3)在满足(2)的条件下,已知O的半径为3,sinB=.求弦CD的长.4.(2014绵阳市,第24题,12分)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE(1)求证:DECEDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值中.考.资.源.网5. (2014成都市,第 27题,10分) 如图,在O的内接ABC中,ACB=90,AC=2BC,过C作AB的垂线l交O于另一点D,垂足为E.设P是 上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:PACPDF;(2)若AB=5,求PD的长;(3)在点P运动过程中,设,求与之间的函数关系式.(不要求写出的取值范围)6. (2014成都市,第 28题,12分) 如图,已知抛物线(为常数,且)与轴从左至右依次交于A,B两点,与轴交于点C,经过点B的直线与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求的值;中.考.资.源.网(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止. 当点F的坐标是多少时,点M在整个运动过程中用时最少?中.考.资.源.网 1(2014资阳市,第 24题,12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当ABM为等腰三角形时,求点M的坐标;(3)将AOB沿x轴向右平移m个单位长度(0m3)得到另一个三角形,将所得的三角形与ABC重叠部分的面积记为S,用m的代数式表示S2.(2014攀枝花市,第 24题,12分)如图,抛物线y=ax28ax+12a(a0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(6,0),且ACD=90(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P,使得PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止设直线m与折线DCA的交点为G,与x轴的交点为H(t,0)记ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围3.(2014攀枝花市,第 23题,12分)如图,以点P(1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将ABC绕点P旋转180,得到MCB(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EGBC于G,连接MQ、QG请问在旋转过程中MQG的大小是否变化?若不变,求出MQG的度数;若变化,请说明理由中.考.资.源.网1(2014内江市,第 21题,9分)如图,一次函数y=kx+b的图象与反比例函数y=(x0)的图象交于点P(n,2),与x轴交于点A(4,0),与y轴交于点C,PBx轴于点B,且AC=BC(1)求一次函数、反比例函数的解析式;中.考.资.源.网(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由2(2014内江市,第 26题,12分) 如图,在ABC中,D是BC边上的点(不与点B、C重合),连结AD问题引入:(1)如图,当点D是BC边上的中点时,SABD:SABC= ;当点D是BC边上任意一点时,SABD:SABC= (用图中已有线段表示)探索研究:(2)如图,在ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想SBOC与SABC之比应该等于图中哪两条线段之比,并说明理由拓展应用:(3)如图,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想的值,并说明理由3(2014达州市,第 24题,10分)倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题习题解答:习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,EAF=45,连接EF,则EF=BE+DF,说明理由解答:正方形ABCD中,AB=AD,BAD=ADC=B=90,中.考.资.源.网把ABE绕点A逆时针旋转90至ADE,点F、D、E在一条直线上EAF=9045=45=EAF,中.考.资.源.网又AE=AE,AF=AFAEFAEF(SAS)EF=EF=DE+DF=BE+DF习题研究观察分析:观察图(1),由解答可知,该题有用的条件是ABCD是四边形,点E、F分别在边BC、CD上;AB=AD;B=D=90;EAF=BAD类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B=D时,还有EF=BE+DF吗?研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当BAD=120,EAF=60时,还有EF=BE+DF吗?(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,EF=BE+DF吗?归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,则EF=BE+DF4(2014巴中市,第 28题,10分) 如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF(1)请你添加一个条件,使得BEHCFH,你添加的条件是,并证明(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由 5(2014自贡市,第 24题,14分)如图,已知抛物线y=ax2x+c与x轴相交于A、B两点,并与直线y=x2交于B、C两点,其中点C是直线y=x2与y轴的交点,连接AC(1)求抛物线的解析式;(2)证明:ABC为直角三角形;(3)ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在ABC各边上)若能,求出最大面积;若不能,请说明理由6.(2014遂宁市,第 22题,10分)如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=;sin2A2+sin2B2=;sin2A3+sin2B3=(1)观察上述等式,猜想:在RtABC中,C=90,都有sin2A+sin2B=(2)如图,在RtABC中,C=90,A、B、C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想(3)已知:A+B=90,且sinA=,求sinB7(2014南充市,第 21题,8分)(8分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时, .8.(2014绵阳市,第 25题,14分)如图,抛物线y=ax2+bx+c(a0)的图象过点M(2,),顶点坐标为N(1,),且与x轴交于A、B两点,与y轴交于C点(1)求抛物线的解析式;中.考.资.源.网(2)点P为抛物线对称轴上的动点,当PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由1(2014资阳市,第 7题,3分)如图,在RtABC中,BAC=90如果将该三角形绕点A按顺时针方向旋转到AB1C1的位置,点B1恰好落在边BC的中点处那么旋转的角度等于().考.资.源.网A55B60C65D802(2014南充市,第 9题,3分)如图,矩形ABCD中,AB5,AD12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()ABCD3(2014宜宾市,第 14题,3分)如图,在RtABC中,B=90,AB=3,BC=4,将ABC折叠,使点B恰好落在边AC上,与点B重合,AE为折痕,则EB= 4(2014南充市,第 16题,3分)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A处,折痕所在直线同时经过边AB、AD(包括端点),设BA=x,则x的取值范围是 .5.(2014绵阳市,第 18题,4分)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,第n次对折后得到的图形面积为Sn,请根据图2化简,S1+S2+S3+S2014=6(2014巴中市,第 24题,7分) 如图,在平面直角坐标系xOy中,ABC三个顶点坐标分别为A(2,4),B(2,1),C(5,2)(1)请画出ABC关于x轴对称的A1B1C1中.考.资.源.网(2)将A1B1C1的三个顶点的横坐标与纵坐标同时乘以2,得到对应的点A2,B2,C2,请画出A2B2C2(3)求A1B1C1与A2B2C2的面积比,即:= (不写解答过程,直接写出结果)M7. (2014成都市,第 24题,4分) 如图,在边长为2的菱形ABCD中,A=60,M是AD边的中点,N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC. 则AC长度的最小值是 .1(2014巴中市,第 22题,6分)定义新运算:对于任意实数a,b都有ab=abab+1,等式右边是通常的加法、减法及乘法运算,例如:24=2424+1=86+1=3,请根据上述知识解决问题:若3x的值大于5而小于9,求x的取值范围2(2014巴中市,第 20题,3分) 如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字请认真观察此图,写出(a+b)4的展开式,(a+b)4=3(2014宜宾市,第 16题,3分)规定:sin(x)=sinx,cos(x)=cosx,sin(x+y)=sinxcosy+cosxsiny据此判断下列等式成立的是 (写出所有正确的序号)cos(60)=;sin75=;中.考.资.源.网sin2x=2sinxcosx;sin(xy)=sinxcosycosxsiny中.考.资.源.网4(2014宜宾市,第 21题,8分) 在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中ABC是格点三角形,对应的S=1,N=0,L=4(1)求出图中格点四边形DEFG对应的S,N,L(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值 5(2014自贡市,第 23题,12分)阅读理解:中.考.资.源.网如图,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”解决问题:(1)如图,A=B=DEC=45,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图中画出矩形ABCD的边AB上的强相似点;(3)如图,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系中.考.资.源.网6. (2014成都市,第 23题,4分) 在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中的三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是 _.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S= .(用数值作答)1.(2014绵阳市,第 10题,3分)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()AnmBnCnDn2(2014内江市,第 20题,9分)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30方向的F点处有疑似飞机残骸的物体(该物体视为静止)为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:1.7)3(2014内江市,第 27题,12分) 某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?4(2014宜宾市,第 20题,8分)在我市举行的中学生安全知识竞赛中共有20道题每一题答对得5分,答错或不答都扣3分(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(7585分),请你算算小王答对了几道题?5(2014巴中市,第 27题,10分)( 如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30,求坝底AD的长度(精确到0.1米,参考数据:1.414,1.732提示:坡度等于坡面的铅垂高度与水平长度之比)6(2014自贡市,第 21题,10分)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?7(2014资阳市,第22题,9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=20x1+1500(0x120,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=10x2+1300(0x220,x2为整数)中.考.资.源.网(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润8(2014资阳市,第 19题,8分)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45的方向上(其中A、B、C在同一平面上)求这个标志性建筑物底部A到岸边BC的最短距离9.(2014遂宁市,第 19题,9分)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售打折前,购买3件甲商品和1件乙商品需用190元;购买2间甲商品和3件乙商品需用220元而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?10.(2014攀枝花市,第 22题,8分)为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台时)挖掘土石方量(单位:m3/台时)甲型挖掘机10060乙型挖掘机12080(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?11.(2014南充市,第 22题,8分) (8分)马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50方向上,在救助船B的西北方向上,船B在船A正东方向140海里处。(参考数据:sin36.50.6,cos36.50.8,tan36.50.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处。中.考.资.源.网 12、(2014南充市,第 23题,8分)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基础运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件。(1)设从A基础运往甲 销售点水果x件,总运费为w元,请用含x的代数式表示w,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费。13.(2014绵阳市,第 21题,12分)绵州大剧院矩形专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案14. (2014成都市,第 26题,8分) 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.1.(2014攀枝花市,第 10题,3分)如图,正方形ABCD的边CD与正方形CGEF的边CE重合,O是EG的中点,EGC的评分项GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:GHBE;HOBG;点H不在正方形CGFE的外接圆上;GBEGMF其中正确的结论有()A1个 B2个 C3个 D4个2(2014内江市,第 21题,9分)如图,一次函数y=kx+b的图象与反比例函数y=(x0)的图象交于点P(n,2),与x轴交于点A(4,0),与y轴交于点C,PBx轴于点B,且AC=BC(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由 WWW.ZK5U.COM3(2014德阳市,第 24题,14分)如图,已知抛物线经过点A(2,0)、B(4,0)、C(0,8)(1)求抛物线的解析式及其顶点D的坐标;(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请求出点P的坐标;(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度4(2014达州市,第 24题,10分)倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题习题解答:习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,EAF=45,连接EF,则EF=BE+DF,说明理由解答:正方形ABCD中,AB=AD,BAD=ADC=B=90,把ABE绕点A逆时针旋转90至ADE,点F、D、E在一条直线上中.考.资.源.网EAF=9045=45=EAF,又AE=AE,AF=AFAEFAEF(SAS)OMEF=EF=DE+DF=BE+DF习题研究观察分析:观察图(1),由解答可知,该题有用的条件是ABCD是四边形,点E、F分别在边BC、CD上;AB=AD;B=D=90;EAF=BAD类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B=D时,还有EF=BE+DF吗?研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当BAD=120,EAF=60时,还有EF=BE+DF吗?(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,EF=BE+DF吗?归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,则EF=BE+DF5. (2014南充市,第 25题,8分) 如图,抛物线y=x+bx+c与直线y=x1交于A、B两点.点A的横坐标为3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PCx轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,; (3)是否存在点P,使PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.1(2014巴中市,第 20题,3分) 如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字请认真观察此图,写出(a+b)4的展开式,(a+b)4=2(2014宜宾市,第 24题,12分) 如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,1),与x轴交于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试验员公司招聘笔试题库及答案
- 轧钢精整工基础技能培训手册
- 营养配餐员实操任务书
- 熔炼浇注工应急处置分析及对策
- 减粘裂化装置操作工安全技术操作规程
- 筑路工职业技能模拟试卷含答案
- 野生动植物及自然保护区人员安全教育培训手册
- 工程热处理工上岗证考试题库及答案
- 元器件电镀工实操任务书
- 一年级数学计算题专项练习集锦
- 物业保洁员劳动竞赛理论知识考试题库500题(含答案)
- 河南中考英语词汇表
- DL∕T 741-2019 架空输电线路运行规程
- (正式版)SH∕T 3541-2024 石油化工泵组施工及验收规范
- 安徽省劳动合同(安徽省人力资源和社会保障厅制)
- 平台建设运营考核方案
- FANUC机器人控制柜结构及原理介绍
- 临时用电安全责任确认书
- 血液信息系统基本建设规范 第3部分:医疗机构输血管理信息系统基本功能规范
- 网络运维专项方案
- DZ∕T 0173-2022 大地电磁测深法技术规程(正式版)
评论
0/150
提交评论