四川省各市2012年中考数学分类解析专题12押轴题.doc_第1页
四川省各市2012年中考数学分类解析专题12押轴题.doc_第2页
四川省各市2012年中考数学分类解析专题12押轴题.doc_第3页
四川省各市2012年中考数学分类解析专题12押轴题.doc_第4页
四川省各市2012年中考数学分类解析专题12押轴题.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川各市2012年中考数学试题分类解析汇编专题12:押轴题1、 选择题1. (2012四川成都3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是【 】 A100(1x)=121 B 100(1x)=121 C 100(1x)2=121 D 100(1x)2=1212. (2012四川乐山3分)二次函数y=ax2+bx+1(a0)的图象的顶点在第一象限,且过点(1,0)设t=a+b+1,则t值的变化范围是【 】A0t1B0t2C1t2D1t13. (2012四川攀枝花3分)如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2若动点E、F同时从点O出发,E点沿折线OAADDC运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度设E运动秒x时,EOF的面积为y(平方单位),则y关于x的函数图象大致为【 】ABCD4. (2012四川宜宾3分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线有下列命题:直线y=0是抛物线y=x2的切线直线x=2与抛物线y=x2 相切于点(2,1)直线y=x+b与抛物线y=x2相切,则相切于点(2,1)若直线y=kx2与抛物线y=x2 相切,则实数k=其中正确的命题是【 】ABCD5. (2012四川广安3分)时钟在正常运行时,时针和分针的夹角会随着时间的变换而变化,设时针与分针的夹角为y度,运行时间为t分,当时间从3:00开始到3:30止,图中能大致表示y与t之间的函数关系的图象是【 】A B C D6. (2012四川内江3分)如图,正ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,则y关于x的函数的图像大致为【 】 A. B. C. D. 7. (2012四川达州3分)如图,在梯形ABCD中,ADBC,E、F分别是AB、CD的中点,则下列结论:EFAD; SABO=SDCO;OGH是等腰三角形;BG=DG;EG=HF。其中正确的个数是【 】A、1个 B、2个 C、3个 D、4个8. (2012四川广元3分) 已知关于x的方程有唯一实数解,且反比例函数的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为【 】A. B. C. D. 9.(2012四川德阳3分)设二次函数,当时,总有,当时,总有,那么c的取值范围是【 】A. B. C. D.10. (2012四川绵阳3分)如图,P是等腰直角ABC外一点,把BP绕点B顺时针旋转90到BP,已知APB=135,PA:PC=1:3,则PA:PB=【 】。A1: B1:2 C:2 D1:11. (2012四川凉山4分)如图,在平面直角坐标系中,O的半径为1,则直线与O的位置关系是【 】A相离 B相切 C相交 D以上三种情况都有可能12. (2012四川巴中3分)如图,已知AD是ABC的边BC上的高,下列能使ABDACD的条件是【 】A. AB=AC B. BAC=90 C. BD=AC D. B=4513. (2012四川资阳3分)如图,在ABC中,C90,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MNAB,MC6,NC,则四边形MABN的面积是【 】A B C D14. (2012四川自贡3分)如图是一个几何体的主视图和左视图某班同学在探究它的俯视图时,画出了如图的几个图形,其中,可能是该几何体俯视图的共有【 】A3个B4个C5个D6个15. (2012四川泸州2分)如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EFAE交DC于点F,连接AF。设,下列结论: (1)ABEECF,(2)AE平分BAF,(3)当k=1时,ABEADF,其中结论正确的是【 】A、(1)(2)(3)B、(1)(3)C、(1) (2)D、(2)(3)16. (2012四川南充3分)如图,平面直角坐标系中,O半径长为1.点P(a,0),P的半径长为2,把P向左平移,当P与O相切时,a的值为【 】(A)3(B)1(C)1,3(D)1,3二、填空题1. (2012四川成都4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图: 第一步:如图,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用); 第二步:如图,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分; 第三步:如图,将MN左侧纸片绕G点按顺时针方向旋转180,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片 (注:裁剪和拼图过程均无缝且不重叠) 则拼成的这个四边形纸片的周长的最小值为 cm,最大值为 cm2. (2012四川乐山3分)如图,ACD是ABC的外角,ABC的平分线与ACD的平分线交于点A1,A1BC的平分线与A1CD的平分线交于点A2,An1BC的平分线与An1CD的平分线交于点An设A=则:(1)A1= ;(2)An= 3. (2012四川攀枝花4分)如图,以BC为直径的O1与O2外切,O1与O2的外公切线交于点D,且ADC=60,过B点的O1的切线交其中一条外公切线于点A若O2的面积为,则四边形ABCD的面积是 4. (2012四川宜宾3分)如图,在O中,AB是直径,点D是O上一点,点C是的中点,弦CEAB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC给出下列结论:BAD=ABC;GP=GD;点P是ACQ的外心;APAD=CQCB其中正确的是 (写出所有正确结论的序号)5. (2012四川广安3分)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为 6. (2012四川内江6分)已知A(1,5),B(3,1)两点,在x轴上取一点M,使AMBN取得最大值时,则M的坐标为 7. (2012四川达州3分)将边长分别为1、2、3、419、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8. (2012四川广元3分)已知一次函数,其中k从1,-2中随机取一个值,b从-1,2,3中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为 9. (2012四川德阳3分)在平面直角坐标系xOy中,已知点A(0,2),A的半径是2,P的半径是1,满足与A及x轴都相切的P有 个.10. (2012四川绵阳4分)如果关于x的不等式组:,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有 个。11. (2012四川凉山5分)如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2= 。12. (2012四川巴中3分)若关于x的方程有增根,则m的值是 13. (2012四川资阳3分)观察分析下列方程:,;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是: 14. (2012四川自贡4分)若是不等于1的实数,我们把称为的差倒数,如2的差倒数是,的差倒数为,现已知,是的差倒数,是的差倒数,是的差倒数,依次类推,则= 15. (2012四川泸州3分)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,Mn分别为边B1B2,B2B3,B3B4,,BnBn+1的中点,B1C1M1的面积为S1,B2C2M2的面积为S2,BnCnMn的面积为Sn,则Sn= 。(用含n的式子表示)16. (2012四川南充3分)如图,四边形ABCD中,BAD=BCD=900,AB=AD,若四边形ABCD的面积是24cm2.则AC长是 cm. 三、解答题1. (2012四川成都10分)如图,AB是O的直径,弦CDAB于H,过CD延长线上一点E作O的切线交AB的延长线于F切点为G,连接AG交CD于K (1)求证:KE=GE; (2)若=KDGE,试判断AC与EF的位置关系,并说明理由; (3) 在(2)的条件下,若sinE=,AK=,求FG的长2. (2012四川成都10分)如图,AB是O的直径,弦CDAB于H,过CD延长线上一点E作O的切线交AB的延长线于F切点为G,连接AG交CD于K (1)求证:KE=GE; (2)若=KDGE,试判断AC与EF的位置关系,并说明理由; (3) 在(2)的条件下,若sinE=,AK=,求FG的长3. (2012四川乐山12分)如图1,ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BDCF成立(1)当正方形ADEF绕点A逆时针旋转(090)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由(2)当正方形ADEF绕点A逆时针旋转45时,如图3,延长BD交CF于点G求证:BDCF;当AB=4,AD=时,求线段BG的长4. (2012四川乐山13分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C已知实数m、n(mn)分别是方程x22x3=0的两根(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD当OPC为等腰三角形时,求点P的坐标;求BOD 面积的最大值,并写出此时点D的坐标5. (2012四川攀枝花12分)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点ACD均在坐标轴上,且AB=5,sinB=(1)求过ACD三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上AE两点之间的一个动点,当P点在何处时,PAE的面积最大?并求出面积的最大值6. (2012四川攀枝花12分)如图所示,在形状和大小不确定的ABC中,BC=6,E、F分别是ABAC的中点,P在EF或EF的延长线上,BP交CE于D,Q在CE上且BQ平分CBP,设BP=y,PE=x(1)当x=EF时,求SDPE:SDBC的值;(2)当CQ=CE时,求y与x之间的函数关系式;(3)当CQ=CE时,求y与x之间的函数关系式; 当CQ=CE(n为不小于2的常数)时,直接写出y与x之间的函数关系式7. (2012四川宜宾10分)如图,O1、O2相交于P、Q两点,其中O1的半径r1=2,O2的半径r2=过点Q作CDPQ,分别交O1和O2于点CD,连接CP、DP,过点Q任作一直线AB交O1和O2于点AB,连接AP、BP、ACDB,且AC与DB的延长线交于点E(1)求证:;(2)若PQ=2,试求E度数8. (2012四川宜宾12分)如图,在ABC中,已知AB=AC=5,BC=6,且ABCDEF,将DEF与ABC重合在一起,ABC不动,ABC不动,DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点(1)求证:ABEECM;(2)探究:在DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积9. (2012四川广安9分)如图,在ABC中,ABC=ACB,以AC为直径的O分别交AB、BC于点M、N,点P在AB的延长线上,且CAB=2BCP(1)求证:直线CP是O的切线(2)若BC=2,sinBCP=,求点B到AC的距离(3)在第(2)的条件下,求ACP的周长10. (2012四川广安10分)如图,在平面直角坐标系xOy中,ABx轴于点B,AB=3,tanAOB=,将OAB绕着原点O逆时针旋转90,得到OA1B1;再将OA1B1绕着线段OB1的中点旋转180,得到OA2B1,抛物线y=ax2+bx+c(a0)经过点B、B1、A2(1)求抛物线的解析式(2)在第三象限内,抛物线上的点P在什么位置时,PBB1的面积最大?求出这时点P的坐标(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由11. (2012四川内江12分)如果方程的两个根是,那么请根据以上结论,解决下列问题:(1) 已知关于的方程求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2) 已知满足,求;(3) 已知满足求正数的最小值。12. (2012四川内江12分)如果方程的两个根是,那么请根据以上结论,解决下列问题:(4) 已知关于的方程求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(5) 已知满足,求;(6) 已知满足求正数的最小值。13. (2012四川达州7分)如图,C是以AB为直径的O上一点,过O作OEAC于点E,过点A作O的切线交OE的延长线于点F,连结CF并延长交BA的延长线于点P.(1)求证:PC是O的切线.(2)若AF=1,OA=,求PC的长. 14. (2012四川达州12分)如图1,在直角坐标系中,已知点A(0,2)、点B(2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为( ),点E的坐标为( ).(2)若抛物线经过A、D、E三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动. 在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.运动停止时,求抛物线的顶点坐标.15. (2012四川广元9分)如图,AB是O的直径,C是AB延长线上一点,CD与O相切于点E,ADCD(1)求证:AE平分DAC;(2)若AB=3,ABE=60,求AD的长;求出图中阴影部分的面积。16. (2012四川广元12分)如图,在矩形ABCO中,AO=3,tanACB=,以O为坐标原点,OC为x轴,OA为y轴建立平面直角坐标系。设D,E分别是线段AC,OC上的动点,它们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单位的速度从点C向点O运动,设运动时间为t秒。(1)求直线AC的解析式;(2)用含t的代数式表示点D的坐标;(3)当t为何值时,ODE为直角三角形?(4)在什么条件下,以RtODE的三个顶点能确定一条对称轴平行于y轴的抛物线?并请选择一种情况,求出所确定抛物线的解析式。17. (2012四川德阳14分) 如图,已知点C是以AB为直径的O上一点,CHAB于点H,过点B作O 的切线交直线AC于点D,点E为CH的中点,连结并延交BD于点F,直线CF交AB的延长线于G.求证:AEFD=AFEC;求证:FC=FB;若FB=FE=2,求O 的半径r的长.18. (2012四川德阳14分)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BEDB交x轴于点E.求经过点D、B、E的抛物线的解析式;将DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由.过中的点F的直线交射线CB于点P,交中的抛物线在第一象限的部分于点Q,且使PFE为等腰三角形,求Q点的坐标.19. (2012四川绵阳12分)如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DGAF,垂足为G。(1)求证:AFBE;(2)试探究线段AO、BO、GO的长度之间的数量关系;(3)若GO:CF=4:5,试确定E点的位置。20. (2012四川绵阳14分)如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+x +c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1)。已知AM=BC。(1)求二次函数的解析式;(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;(3)在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N。若直线lBD,如图1所示,试求的值;若l为满足条件的任意直线。如图2所示,中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例。21. (2012四川凉山8分)如图,已知直径为OA的P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3)(1) 求证:PODABO;(2) 若直线l:y=kx+b经过圆心P和D,求直线l的解析式22. (2012四川凉山8分)如图,已知直径为OA的P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3)(3) 求证:PODABO;(4) 若直线l:y=kx+b经过圆心P和D,求直线l的解析式23. (2012四川巴中10分)如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,与x轴交于点B,与反比例函数的图象分别交于点M,N,已知AOB的面积为1,点M的纵坐标为2,(1)求一次函数和反比例函数的解析式;(2)直接写出时x的取值范围。24. (2012四川巴中12分)如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tanACB=,点E,F分别是线段AD,AC上的动点(点E不与点A,D重合),且CEF=ACB。(1)求AC的长和点D的坐标;(2)说明AEF与DCE相似;(3)当EFC为等腰三角形时,求点E的坐标。25. (2012四川资阳9分)如图,在ABC中,ABAC,A30,以AB为直径的O交B于点D,交AC于点,连结DE,过点B作BP平行于DE,交O于点P,连结EP、CP、OP(1)(3分)BDDC吗?说明理由;(2)(3分)求BOP的度数;(3)(3分)求证:CP是O的切线;如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目在进行小组交流的时候,小明说:“设OP交AC于点G,证AOGCPG”;小强说:“过点C作CHAB于点H,证四边形CHOP是矩形”26. (2012四川资阳9分)抛物线的顶点在直线上,过点F(2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MAx轴于点A,NBx轴于点B(1)(3分)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)(3分)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NFNB;(3)(3分)若射线NM交x轴于点P,且PAPB,求点M的坐标27. (2012四川自贡12分)如图所示,在菱形ABCD中,AB=4,BAD=120,AEF为正三角形,点E、F分别在菱形的边BCCD上滑动,且E、F不与BCD重合(1)证明不论E、F在BCCD上如何滑动,总有BE=CF;(2)当点E、F在BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论