高中数学 第三章 概率 3.2.1 古典概型学案 新人教A版必修3.doc_第1页
高中数学 第三章 概率 3.2.1 古典概型学案 新人教A版必修3.doc_第2页
高中数学 第三章 概率 3.2.1 古典概型学案 新人教A版必修3.doc_第3页
高中数学 第三章 概率 3.2.1 古典概型学案 新人教A版必修3.doc_第4页
高中数学 第三章 概率 3.2.1 古典概型学案 新人教A版必修3.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

32.1古典概型学习目标1.了解基本事件的特点.2.理解古典概型的定义.3.会应用古典概型的概率公式解决实际问题知识点一基本事件1基本事件的定义一次试验连同其中可能出现的每一个结果称为一个基本事件,它们是试验中不能再分的最简单的随机事件一次试验中只能出现一个基本事件如在掷一枚质地均匀的骰子试验中,出现“1点”“2点”“3点”“4点”“5点”“6点”,共6个结果,这就是这一随机试验的6个基本事件2基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和如在掷一枚质地均匀的骰子试验中,随机事件“出现奇数点”可以由基本事件“出现1点”“出现3点”“出现5点”共同组成思考“抛掷两枚硬币,至少一枚正面向上”是基本事件吗?答不是“抛掷两枚硬币,至少一枚正面向上”包含一枚正面向上,两枚正面向上,所以不是基本事件知识点二古典概型1古典概型的定义(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型2古典概型的特点(1)有限性:在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件(2)等可能性:每个基本事件发生的可能性是相等的3古典概型的概率公式对于任何事件a,p(a).思考若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗?答不是,还必须满足每个基本事件出现的可能性相等题型一基本事件的定义及特点例1一个口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球(1)共有多少个基本事件?(2)2个都是白球包含几个基本事件?解方法一(1)采用列举法分别记白球为1,2,3号,黑球为4,5号,则有以下基本事件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个(其中(1,2)表示摸到1号、2号)(2)“2个都是白球”包含(1,2),(1,3),(2,3)三个基本事件方法二(1)采用列表法设5个球的编号为a,b,c,d,e,其中a,b,c为白球,d,e为黑球列表如下:abcdea(a,b)(a,c)(a,d)(a,e)b(b,a)(b,c)(b,d)(b,e)c(c,a)(c,b)(c,d)(c,e)d(d,a)(d,b)(d,c)(d,e)e(e,a)(e,b)(e,c)(e,d)由于每次取2个球,因此每次所得的2个球不相同,而事件(b,a)与(a,b)是相同的事件,故共有10个基本事件(2)“2个都是白球”包含(a,b),(b,c),(c,a)三个基本事件反思与感悟1.求基本事件的基本方法是列举法基本事件具有以下特点:(1)不可能再分为更小的随机事件;(2)两个基本事件不可能同时发生2当基本事件个数较多时还可应用列表法或树形图法求解跟踪训练1做抛掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第2颗骰子出现的点数写出:(1)试验的基本事件;(2)事件“出现点数之和大于8”;(3)事件“出现点数相等”;(4)事件“出现点数之和等于7”解(1)这个试验的基本事件共有36个,列举如下:(1,1),(1,2),(1,3)(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)(2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)(3)“出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)(4)“出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)题型二利用古典概型公式求概率例2从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率:(1)事件a三个数字中不含1和5;(2)事件b三个数字中含1或5解这个试验的基本事件为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),所以基本事件总数n10.(1)因为事件a(2,3,4),所以事件a包含的事件数m1.所以p(a).(2)因为事件b(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5),所以事件b包含的基本事件数m9.所以p(b).反思与感悟1.古典概型概率求法步骤:(1)确定等可能基本事件总数n;(2)确定所求事件包含基本事件数m;(3)p(a).2使用古典概型概率公式应注意:(1)首先确定是否为古典概型;(2)a事件是什么,包含的基本事件有哪些跟踪训练2将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_答案解析基本事件共有36个如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中满足点数之和小于10的有30个故所求概率为p.题型三较复杂的古典概型的概率计算例3有a,b,c,d四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就坐时,(1)求这四人恰好都坐在自己席位上的概率;(2)求这四人恰好都没坐在自己席位上的概率;(3)求这四人恰好有1位坐在自己席位上的概率解将a,b,c,d四位贵宾就座情况用下面图形表示出来:如上图所示,本题中的等可能基本事件共有24个(1)设事件a为“这四人恰好都坐在自己的席位上”,则事件a只包含1个基本事件,所以p(a).(2)设事件b为“这四人恰好都没坐在自己席位上”,则事件b包含9个基本事件,所以p(b).(3)设事件c为“这四人恰好有1位坐在自己席位上”,则事件c包含8个基本事件,所以p(c).反思与感悟1.当事件个数没有很明显的规律,并且涉及的基本事件又不是太多时,我们可借助树状图法直观地将其表示出来,这是进行列举的常用方法树状图可以清晰准确地列出所有的基本事件,并且画出一个树枝之后可猜想其余的情况2在求概率时,若事件可以表示成有序数对的形式,则可以把全体基本事件用平面直角坐标系中的点表示,即采用图表的形式可以准确地找出基本事件的个数故采用数形结合法求概率可以使解决问题的过程变得形象、直观,给问题的解决带来方便跟踪训练3用三种不同的颜色给如图所示的3个矩形随机涂色,每个矩形只涂一种颜色(1)求3个矩形颜色都相同的概率;(2)求3个矩形颜色都不相同的概率;(3)求3个矩形颜色不都相同的概率解设3个矩形从左到右依次为矩形1、矩形2、矩形3.用三种不同的颜色给题目中所示的3个矩形随机涂色,可能的结果如图所示由图知基本事件共有27个(1)记“3个矩形颜色都相同”为事件a,由图,知事件a的基本事件有3个,故p(a).(2)记“3个矩形颜色都不相同”为事件b,由图,知事件b的基本事件有6个,故p(b).(3)记“3个矩形颜色不都相同”为事件c.方法一由图,知事件c的基本事件有24个,故p(c).方法二事件c与事件a互为对立事件,故p(c)1p(a)1.古典概型的应用例4(12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一所学校的概率审题指导(1)要求2名教师性别相同的概率,应先写出所有可能的结果,可以采用列举法求解(2)要求选出的2名教师来自同一所学校的概率,应先求出2名教师来自同一所学校的基本事件规范解答(1)甲校2名男教师分别用a,b表示,1名女教师用c表示;乙校1名男教师用d表示,2名女教师分别用e,f表示1分从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(a,d),(a,e),(a,f),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f)失分警示:若没有写出基本事件,此题不得分.共9种3分从中选出2名教师性别相同的结果有:(a,d),(b,d),(c,e),(c,f),共4种,5分所以选出的2名教师性别相同的概率为p.6分(2)从甲校和乙校报名的6名教师中任选2名的所有可能的结果为:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)失分警示:基本事件写错一个不得分.共15种8分从中选出2名教师来自同一所学校的结果有:(a,b),(a,c),(b,c),(d,e),(d,f),(e,f),共6种,10分所以选出的2名教师来自同一,所学校的概率为p.失分警示:结果不正确扣2分.12分1抛掷一枚骰子,出现偶数的基本事件个数为()a1b2c3d4答案c解析因为抛掷一枚骰子出现数字的基本事件有6个,它们分别是1,2,3,4,5,6,故出现偶数的基本事件是3个2在国庆阅兵中,某兵种a,b,c三个方阵按一定次序通过主席台,若先后次序是随机排定的,则b先于a,c通过的概率为()a.b.c.d.答案b解析用(a,b,c)表示a,b,c通过主席台的次序,则所有可能的次序有:(a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a),共6种,其中b先于a,c通过的有:(b,c,a)和(b,a,c),共2种,故所求概率p.3从分别写有a,b,c,d,e的5张卡片中任取2张,则这2张卡片上的字母恰好是按字母顺序相邻的概率为()a.b.c.d.答案b解析可看作分成两次抽取,第一次任取一张有5种方法,第二次从剩下的4张中再任取一张有4种方法,因为(b,c)与(c,b)是一样的,故试验的所有基本事件总数为10,两字母恰好是按字母顺序相邻的有(a,b),(b,c),(c,d),(d,e)4种,故两字母恰好是按字母顺序相邻的概率为p.4甲、乙、丙三名同学站成一排,甲站在中间的概率是()a.b.c.d.答案c解析基本事件有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共六个,甲站在中间的事件包括:乙甲丙、丙甲乙,共2个,所以甲站在中间的概率为p.5从2,3,8,9任取两个不同的数字,分别记为a,b,则loga b为整数的概率_.答案解析从2,3,8,9任取2个分别为记为(a,b),则有(2,3),(3,2),(2,8),(8,2),(2,9),(9,2),(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论