高考物理资料一轮复习----难点突破.doc_第1页
高考物理资料一轮复习----难点突破.doc_第2页
高考物理资料一轮复习----难点突破.doc_第3页
高考物理资料一轮复习----难点突破.doc_第4页
高考物理资料一轮复习----难点突破.doc_第5页
已阅读5页,还剩78页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中试题网 快速注册,免费下载!本站资料大多网友上传,部分网络转载!如涉及版权问题,请及时与本站联系,马上修正!为方便大家修改试题,可去除本资料的版权信息,方法如下:“视图”菜单下“页眉与页脚”,ctrl+a全选,然后delete即可清理干净!2009年高考物理一轮复习资料-难点突破难点1 “追碰”问题与时空观“追碰”类问题以其复杂的物理情景,综合的知识内涵及广阔的思维空间,充分体现着考生的理解能力、分析综合能力、推理能力、空间想象能力及理论联系实际的创新能力,是考生应考的难点,也是历届高考常考常新的命题热点.难点磁场1.()(1999年全国)为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v=120 km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50 s,刹车时汽车受到阻力的大小f为汽车重的0.40倍,该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10 m/s2)图1-12.()(2000年全国)一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动.有一台发出细光束的激光器装在小转台M上,到轨道的距离MN为d=10 m,如图1-1所示.转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T60.光束转动方向如图中箭头所示.当光束与MN的夹角为45时,光束正好射到小车上.如果再经过t2.5 ,光束又射到小车上,则小车的速度为多少?(结果保留两位数字)图1-23.()一段凹槽A倒扣在水平长木板C上,槽内有一小物块B,它到槽内两侧的距离均为,如图1-2所示.木板位于光滑水平的桌面上,槽与木板间的摩擦不计,小物块与木板间的动摩擦因数为.A、B、C三者质量相等,原来都静止.现使槽A以大小为v0的初速向右运动,已知v0.当A和B发生碰撞时,两者的速度互换.求:(1)从A、B发生第一次碰撞到第二次碰撞的时间内,木板C运动的路程.(2)在A、B刚要发生第四次碰撞时,A、B、C三者速度的大小.案例探究例1()从离地面高度为h处有自由下落的甲物体,同时在它正下方的地面上有乙物体以初速度v0竖直上抛,要使两物体在空中相碰,则做竖直上抛运动物体的初速度v0应满足什么条件?(不计空气阻力,两物体均看作质点).若要乙物体在下落过程中与甲物体相碰,则v0应满足什么条件?命题意图:以自由下落与竖直上抛的两物体在空间相碰创设物理情景,考查理解能力、分析综合能力及空间想象能力.B级要求.错解分析:考生思维缺乏灵活性,无法巧选参照物,不能达到快捷高效的求解效果.解题方法与技巧:(巧选参照物法)选择乙物体为参照物,则甲物体相对乙物体的初速度:v甲乙=0-v0=-v0甲物体相对乙物体的加速度a甲乙=-g-(-g)=0由此可知甲物体相对乙物体做竖直向下,速度大小为v0的匀速直线运动.所以,相遇时间为:t=对第一种情况,乙物体做竖直上抛运动,在空中的时间为:0t即:0 所以当v0,两物体在空中相碰.对第二种情况,乙物体做竖直上抛运动,下落过程的时间为:t即.所以当 v0时,乙物体在下落过程中与甲物体相碰.图1-3例2()如图1-3所示,质量为m的木块可视为质点,置于质量也为m的木盒内,木盒底面水平,长l=0.8 m,木块与木盒间的动摩擦因数=0.5,木盒放在光滑的地面上,木块A以v0=5 m/s的初速度从木盒左边开始沿木盒底面向右运动,木盒原静止.当木块与木盒发生碰撞时无机械能损失,且不计碰撞时间,取g=10 m/s2.问:(1)木块与木盒无相对运动时,木块停在木盒右边多远的地方?(2)在上述过程中,木盒与木块的运动位移大小分别为多少?命题意图:以木块与木盒的循环碰撞为背景,考查考生分析综合及严密的逻辑推理能力.B级要求.错解分析:对隔离法不能熟练运用,不能将复杂的物理过程隔离化解为相关联的多个简单过程逐阶段分析,是该题出错的主要原因.解题方法与技巧:(1)木块相对木盒运动及与木盒碰撞的过程中,木块与木盒组成的系统动量守恒,最终两者获得相同的速度,设共同的速度为v,木块通过的相对路程为s,则有:mv0=2mv mgs=mv02-2mv2由解得s=1.25 m 设最终木块距木盒右边为d,由几何关系可得:d=s-l=0.45 m 图1-4(2)从木块开始运动到相对木盒静止的过程中,木盒的运动分三个阶段:第一阶段,木盒向右做初速度为零的匀加速运动;第二阶段,木块与木盒发生弹性碰撞,因两者质量相等,所以交换速度;第三阶段,木盒做匀减速运动,木盒的总位移等于一、三阶段的位移之和.为了求出木盒运动的位移,我们画出状态示意图,如图1-4所示.设第一阶段结束时,木块与木盒的速度分别为v1、v2,则:mv0=mv1+mv2 mgL=mv02-m(v12+v22)因在第二阶段中,木块与木盒转换速度,故第三阶段开始时木盒的速度应为v1,选木盒为研究对象对第一阶段:mgs1=mv22对第三阶段:mgs2=mv12-mv2从示意图得 s盒=s1+s2 s块=s盒+L-d 解得 s盒=1.075 m s块=1.425 m锦囊妙计一、高考走势“追碰”问题,包括单纯的“追及”类、“碰撞”类和“追及碰撞”类,处理该类问题,首先要求学生有正确的时间和空间观念(物体的运动过程总与时间的延续和空间位置的变化相对应).同时,要求考生必须理解掌握物体的运动性质及规律,具有较强的综合素质和能力.该类问题综合性强,思维容量大,且与生活实际联系密切,是高考选拔性考试不可或缺的命题素材,应引起广泛的关注.二、“追及”“碰撞”问题指要1.“追及”问题讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题.一定要抓住两个关系:即时间关系和位移关系.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点.2.“碰撞”问题碰撞过程作用时间短,相互作用力大的特点,决定了所有碰撞问题均遵守动量守恒定律.对正碰,根据碰撞前后系统的动能是否变化,又分为弹性碰撞和非弹性碰撞.弹性碰撞:系统的动量和动能均守恒,因而有:m1v1+m2v2=m1v1+m2v2 m1v12+m2v22=m1v12+m2v22上式中v1、v1分别是m1碰前和碰后的速度,v2、v2分别是m2碰前和碰后的速度.解式得v1= v2= 完全非弹性碰撞:m1与m2碰后速度相同,设为v,则m1v1+m2v2=(m1+m2)v,v=.系统损失的最大动能Ekm=m1v12+m2v22- (m1+m2)v2.非弹性碰撞损失的动能介于弹性碰撞和完全非弹性碰撞之间.在处理碰撞问题时,通常要抓住三项基本原则:(1)碰撞过程中动量守恒原则.(2)碰撞后系统动能不增原则.(3)碰撞后运动状态的合理性原则.碰撞过程的发生应遵循客观实际.如甲物追乙物并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于、等于乙的速度或甲反向运动.三、处理“追碰”类问题思路方法据物体运动性质列(含有时间)的位移方程由示意图找两物体位移关系分析两物体运动过程画运动示意图由示意图找两联立方程求解(判断能否碰撞)若发生碰撞,据动量关系(守恒能量转化关系列方程求解解决“追碰”问题大致分两类方法,即数学法(如函数极值法、图象法等)和物理方法(参照物变换法、守恒法等).歼灭难点训练1.()凸透镜的焦距为f,一个在透镜光轴上的物体,从距透镜3f处,沿光轴逐渐移动到距离2f处,在此过程中A.像不断变大 B.像和物之间距离不断减小C.像和焦点的距离不断增大 D.像和透镜的距离不断减小2.()两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车,已知前车在刹车过程中所行驶的距离为s,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持距离至少应为多少?图1-53.()如图1-5所示,水平轨道上停放着一辆质量为5.0102 kg的小车A,在A的右方L=8.0 m处,另一辆小车B正以速度vB=4.0 m/s的速度向右做匀速直线运动远离A车,为使A车能经过t=10.0 s时间追上B车,立即给A车适当施加向右的水平推力使小车做匀变速直线运动,设小车A受到水平轨道的阻力是车重的0.1倍,试问:在此追及过程中,推力至少需要做多少功?取g=10 m/s2) 图1-64.()如图1-6所示,在光滑的水平面上放置一质量为m的小车,小车上有一半径为R的光滑的弧形轨道,设有一质量为m的小球,以v0的速度,方向水平向左沿圆弧轨道向上滑动,达到某一高度h后,又沿轨道下滑,试求h的大小及小球刚离开轨道时的速度.图1-75.()如图1-7所示,长为2L的板面光滑且不导电的平板小车C放在光滑水平面上,车的右端有块挡板,车的质量mC=4 m,绝缘小物块B的质量mB=2 m.若B以一定速度沿平板向右与C车的挡板相碰,碰后小车的速度总等于碰前物块B速度的一半.今在静止的平板车的左端放一个带电量为+q、质量为mA=m的小物块A,将物块B放在平板车的中央,在整个空间加上一个水平方向的匀强电场时,金属块A由静止开始向右运动,当A以速度v0与B发生碰撞,碰后A以v0的速率反弹回来,B向右运动.(1)求匀强电场的场强大小和方向.(2)若A第二次和B相碰,判断是在B与C相碰之前还是相碰之后?(3)A从第一次与B相碰到第二次与B相碰这个过程中,电场力对A做了多少功?图1-86.()如图1-8所示,水平放置的导轨,其电阻、摩擦均不计,固定在竖直向下的匀强磁场中,磁感应强度为B,左端间距为2L,右端间距为L,今在导轨上放ab、cd两杆,其质量分为2M、M,电阻分为2R、R,现让ab杆以初速度v0向右运动.求cd棒的最终速度(两棒均在不同的导轨上).参考答案:难点磁场1.1.6102 m 2.提示:该题为一“追及”的问题,有两种可能解,第一次为物追光点,在相同时间内,汽车与光点扫描的位移相等,L1=d(tan45-tan30),则v1=1.7 m/s,第二次为(光)点追物,时间相同,空间位移相同,L2=d(tan60-tan45),可得v2=2.9 m/s. 3.(1)s=l- (2)vA=v0;vB=vC=v0歼灭难点训练1.ABC 2.2 s 3.Wmin=2.8104 J4.小球从进入轨道,到上升到h高度时为过程第一阶段,这一阶段类似完全非弹性的碰撞,动能损失转化为重力势能(而不是热能).据此可列方程:mv0=(m+m)v, mv02=(m+m)v2+mgh解得h=v02/4g.小球从进入到离开,整个过程属弹性碰撞模型,又由于小球和车的等质量,由弹性碰撞规律可知,两物体速度交换,故小球离开轨道时速度为零.说明:广义上的碰撞,相互作用力可以是弹力、分子力、电磁力、核力等,因此,碰撞可以是宏观物体间的碰撞,也可以是微观粒子间的碰撞.拓宽后的碰撞,除例题代表的较长时间的碰撞题型外,还有非接触型碰撞和非弹力作用的碰撞.5.(1)对金属块A用动能定理qEL=mv02所以电场强度大小E= 方向水平向右(2)A、B碰撞,由系统动量守恒定律得mAv0=mA(-v0)+mBvB用mB=2m代入解得vB=v0 B碰后做匀速运动,碰到挡板的时间tB=A的加速度aA= A在tB段时间的位移为sA=vatB+atB2=-v0()2=L因sAL,故A第二次与B相碰必在B与C相碰之后(3)B与C相碰,由动量守恒定律可得mBvB=mBvB+mCvC vC=vB vB=0A从第一次相碰到第二次与B相碰的位移为L,因此电场力做的功W电=qEL=mv02. 6.难点2 电磁感应电路分析与模型转换电磁感应电路的分析与计算以其覆盖知识点多,综合性强,思维含量高,充分体现考生能力和素质等特点,成为历届高考命题的特点.难点磁场图15-11.()(1999年广东)如图15-1所示,MN、PQ为两平行金属导轨,M、P间连有一阻值为R的电阻,导轨处于匀强磁场中,磁感应强度为B,磁场方向与导轨所在平面垂直,图中磁场垂直纸面向里.有一金属圆环沿两导轨滑动,速度为v,与导轨接触良好,圆环的直径d与两导轨间的距离相等.设金属环与导轨的电阻均可忽略,当金属环向右做匀速运动时A.有感应电流通过电阻R,大小为B.有感应电流通过电阻R,大小为C.有感应电流通过电阻R,大小为D.没有感应电流通过电阻R图15-22.()两根相距d=0.20 m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.20 T,导轨上面横放着两条金属细杆,构成矩形闭合回路.每条金属细杆的电阻为r=0.25 ,回路中其余部分的电阻可不计,已知两金属细杆在平行导轨的拉力作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0 m/s,如图15-2所示,不计导轨上的摩擦.(1)求作用于每条金属细杆的拉力的大小.(2)求两金属细杆在间距增加0.40 m的滑动过程中共产生的热量.图15-33.()(1999年上海)如图15-3所示,长为L、电阻r=0.3 、质量m=0.1 kg的金属棒CD垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R=0.5 的电阻,量程为了 03.0 A的电流表串接在一条导轨上,量程为01.0 V的电压表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F使金属棒右移.当金属棒以v=2 m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由.(2)拉动金属棒的外力F多大?(3)此时撤去外力F,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R的电量.案例探究例1()据报道,1992年7月,美国阿特兰蒂斯号航天飞机进行了一项卫星悬绳发电实验,实验取得了部分成功.航天飞机在地球赤道上空离地面约3000 km处由东向西飞行,相对地面速度大约6.5103 m/s,从航天飞机上向地心方向发射一颗卫星,携带一根长20 km,电阻为800 的金属悬绳,使这根悬绳与地磁场垂直,做切割磁感线运动.假定这一范围内的地磁场是均匀的.磁感应强度为410-5T,且认为悬绳上各点的切割速度和航天飞机的速度相同.根据理论设计,通过电离层(由等离子体组成)的作用,悬绳可以产生约3 A的感应电流,试求:(1)金属悬绳中产生的感应电动势;(2)悬绳两端的电压;(3)航天飞机绕地球运行一圈悬绳输出的电能(已知地球半径为6400 km).命题意图:考查考生信息摄取、提炼、加工能力及构建物理模型的抽象概括能力.B级要求.错解分析:考生缺乏知识迁移运用能力和抽象概括能力,不能于现实情景中构建模型(切割磁感线的导体棒模型)并进行模型转换(转换为电源模型及直流电路模型),无法顺利运用直流电路相关知识突破.图15-4解题方法与技巧:将飞机下金属悬绳切割磁感线产生感应电动势看作电源模型,当它通过电离层放电可看作直流电路模型.如图15-4所示.(1)金属绳产生的电动势:E=Blv=410-5201036.5103 V5.2103 V(2)悬绳两端电压,即路端电压可由闭合电路欧姆定律得:U=E-Ir=5.2103-3800V2.8103 V(3)飞机绕地运行一周所需时间t=s9.1103 s则飞机绕地运行一圈输出电能:E=UIt=280039.1103 .6107 图15-5例2()如图15-5所示,竖直向上的匀强磁场,磁感应强度B=0.5 T,并且以=0.1 T/s在变化,水平轨道电阻不计,且不计摩擦阻力,宽0.5 m的导轨上放一电阻R0=0.1 的导体棒,并用水平线通过定滑轮吊着质量M=0.2 kg的重物,轨道左端连接的电阻R=0.4 ,图中的l=0.8 m,求至少经过多长时间才能吊起重物.命题意图:考查理解能力、推理能力及分析综合能力.B级要求.错解分析:(1)不善于逆向思维,采取执果索因的有效途径探寻解题思路;(2)实际运算过程忽视了B的变化,将B代入F安=BIlab,导致错解.解题方法与技巧:由法拉第电磁感应定律可求出回路感应电动势:E=由闭合电路欧姆定律可求出回路中电流I由于安培力方向向左,应用左手定则可判断出电流方向为顺时针方向(由上往下看).再根据楞次定律可知磁场增加,在t时磁感应强度为:B(Bt) 此时安培力为F安=BIlab由受力分析可知F安=mg由式并代入数据:t=495 s锦囊妙计一、命题特点对电磁感应电路的考查命题,常以学科内综合题目呈现,涉及电磁感应定律、直流电路、功、动能定理、能量转化与守恒等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力.二、求解策略变换物理模型,是将陌生的物理模型与熟悉的物理模型相比较,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法.巧妙地运用“类同”变换,“类似”变换,“类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化.解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零.图15-6歼灭难点训练图15-7 1.()在方向水平的、磁感应强度为0.5 T的匀强磁场中,有两根竖直放置的导体轨道cd、ef,其宽度为1 m,其下端与电动势为12 V、内电阻为1 的电源相接,质量为0.1 kg的金属棒MN的两端套在导轨上可沿导轨无摩擦地滑动,如图15-6所示,除电源内阻外,其他一切电阻不计,g=10 ms2,从S闭合直到金属棒做匀速直线运动的过程中A.电源所做的功等于金属棒重力势能的增加B.电源所做的功等于电源内阻产生的焦耳热C.匀速运动时速度为20 msD.匀速运动时电路中的电流强度大小是2 A2.()两根光滑的金属导轨,平行放置在倾角为的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高度.如图15-7所示,在这过程中A.作用于金属棒上的各个力的合力所做的功等于零B.作用于金属棒上的各个力的合力所做的功等于mgh与电阻R上发出的焦耳热之和C.恒力F与安培力的合力所做的功等于零D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热3.()如图15-8所示,空间存在垂直于纸面的均匀磁场,在半径为a的圆形区域内、外,磁场方向相反,磁感应强度的大小均为B.一半径为b,电阻为R的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.在内、外磁场同时由B均匀地减小到零的过程中,通过导线截面的电量Q=_.图15-9图15-8 4.()如图15-9所示,放在绝缘水平面上的两条平行金属导轨MN和PQ之间的宽度为l,置于磁感应强度值为B的匀强磁场中,B的方向垂直于导轨平面,导轨左端接有电阻为R,其他电阻不计,导轨右端接有电容为C的电容器,长为2l的金属棒ab放在导轨上与导轨垂直且接触良好,其a端绞链在导轨PQ上,现将棒以角速度绕a点沿水平导轨平面顺时针旋转90角,求这个过程中通过R的总电量是多少?图15-105.()如图15-10所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为.整个装置处在磁感应强度为B的,方向垂直于导轨平面向上的匀强磁场中.AC端连有电阻值为R的电阻.若将一质量M,垂直于导轨的金属棒EF在距BD端s处由静止释放,在EF棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F,方向沿斜面向上的恒力把EF棒从BD位置由静止推至距BD端s处,突然撤去恒力F,棒EF最后又回到BD端.求:(1)EF棒下滑过程中的最大速度.(2)EF棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能(金属棒、导轨的电阻均不计)?图15-116.()在磁感应强度为B=0.4 T的匀强磁场中放一个半径r0=50 cm的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度=103 rad/s逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R0=0.8 ,外接电阻R=3.9 ,如所示,求:(1)每半根导体棒产生的感应电动势.(2)当电键S接通和断开时两电表示数(假定RV,RA0).参考答案:难点磁场1.B.提示:将圆环转换为并联电源模型,如图15-1. 图151 图1522.(1)3.210-2 N (2)1.2810-2 J提示:将电路转换为直流电路模型如图152.3.(1)电压表 理由略 (2)F=1.6 N (3)Q=0.25 C歼灭难点训练1.CD 2.AD 3.Q=It=或Q=4.Q=Bl2(+2C)5.(1)如图153当EF从距BD端s处由静止开始滑至BD的过程中,受力情况如图所示.安培力:F安=BIl=B图153根据牛顿第二定律:a=所以,EF由静止开始做加速度减小的变加速运动.当a=0时速度达到最大值vm.由式中a=0有:Mgsin-B2l2vm/R=0vm=(2)由恒力F推至距BD端s处,棒先减速至零,然后从静止下滑,在滑回BD之前已达最大速度vm开始匀速.设EF棒由BD从静止出发到再返回BD过程中,转化成的内能为E.根据能的转化与守恒定律:Fs-E=Mvm2 E=Fs-M()26.(1)每半根导体棒产生的感应电动势为E1=Bl=Bl2=.4103(0.5)2 V50 V.(2)两根棒一起转动时,每半根棒中产生的感应电动势大小相同、方向相同(从边缘指向中心),相当于四个电动势和内阻相同的电池并联,得总的电动势和内电阻为EE150 V,r=R00.1 当电键S断开时,外电路开路,电流表示数为零,电压表示数等于电源电动势,为50 V.当电键S接通时,全电路总电阻为R=r+R=(0.1+3.9)=4.由全电路欧姆定律得电流强度(即电流表示数)为I A=12.5 A.此时电压表示数即路端电压为U=E-Ir=50-12.50.1 V48.75 V(电压表示数)或UIR12.53.9 V48.75 V.难点3 滑动变阻器应用分析图12-1滑动变阻器是电学实验中常用的仪器,近几年高考电学设计性实验命题对其应用多次直接或渗透考查.如何选择滑动变阻器的接法设计控制电路仍是历届考生应考的难点.难点磁场1.()如图12-1所示,滑动变阻器电阻最大值为R,负载电阻R1=R,电源电动势为E,内阻不计.(1)当K断开,滑动头c移动时,R1两端的电压范围是多少?(2)当K接通,滑动头c移动时,R1两端的电压范围是多少?(3)设R的长度ab=L,R上单位长度的电阻各处相同,a、c间长度为x,当K接通后,加在R1上的电压U1与x的关系如何?2.()用伏安法测金属电阻Rx(约为5 )的值,已知电流表内阻为1 ,量程为0.6 A,电压表内阻为几k,量程为3 V,电源电动势为9 V,滑动变阻器的阻值为06,额定电流为5 A,试画出测量Rx的原理图.案例探究例1()用伏安法测量某一电阻Rx阻值,现有实验器材如下:待测电阻Rx(阻值约5 ,额定功率为1 W);电流表A1(量程00.6 A,内阻0.2 );电流表A2(量程03 A,内阻0.05 );电压表V1(量程03 V,内阻3 k);电压表V2(量程015 V,内阻15 k);滑动变阻器R0(050 ),蓄电池(电动势为6 V)、开关、导线.为了较准确测量Rx阻值,电压表、电流表应选_,并画出实验电路图.命题意图:考查正确选择实验仪器及据实验原理设计合理电路的实验能力.B级要求. 错解分析:没能据安全性、准确性原则选择A1和V1,忽视了节能、方便的原则,采用了变阻器的分压接法.解题方法与技巧:由待测电阻Rx额定功率和阻值的大约值,可以计算待测电阻Rx的额定电压、额定电流的值约为图12-2U=2.2 V,I=0.45 A.则电流表应选A1,电压表应选V1.又因=24.5 Rx,则电流表必须外接.图12-3因为滑动变阻器的全阻值大于被测电阻Rx,故首先考虑滑动变阻器的限流接法,若用限流接法,则被测电阻Rx上的最小电流为Imin=0.11 AI额,故可用限流电路.电路如图12-2所示.锦囊妙计一、滑动变阻器的限流接法与分压接法的特点 图12-3所示的两种电路中,滑动变阻器(最大阻值为R0)对负载RL的电压、电流强度都起控制调节作用,通常把图12-3(a)电路称为限流接法,图12-3(b)电路称为分压接法.负载RL上电压调节范围(忽略电源内阻)负载RL上电流调节范围(忽略电源内阻)相同条件下电路消耗的总功率限流接法EULEILEIL分压接法0ULE0ILE(IL+Iap)比较分压电路调节范围较大分压电路调节范围较大限流电路能耗较小其中,在限流电路中,通RL的电流IL=,当R0RL时IL主要取决于R0的变化,当R0RL时,IL主要取决于RL,特别是当R0R0Rap,所以RL与Rap的并联值R并Rap,而整个电路的总阻约为R0,那么RL两端电压UL= IR并=Rap,显然ULRap,且Rap越小,这种线性关系越好,电表的变化越平稳均匀,越便于观察和操作.(3)若采用限流接法,电路中实际电压(或电流)的最小值仍超过RL的额定值时,只能采用分压接法.2.下列情况可选用限流式接法图124(1)测量时电路电流或电压没有要求从零开始连续调节,只是小范围内测量,且RL与R0接近或RL略小于R0,采用限流式接法.(2)电源的放电电流或滑动变阻器的额定电流太小,不能满足分压式接法的要求时,采用限流式接法.(3)没有很高的要求,仅从安全性和精确性角度分析两者均可采用时,可考虑安装简便和节能因素采用限流式接法.歼灭难点训练1.()(2002年上海)在如图所示12-4所示电路中,当变阻器R3的滑动头P向b端移动时A.电压表示数变大,电流表示数变小B.电压表示数变小,电流表示数变大C.电压表示数变大,电流表示数变大图12-5D.电压表示数变小,电流表示数变小2.()如图12-5所示,当变阻器R2的触头P向右滑动时,有A.电容器C内电场强度增大 B.电压表示数增大C.R1上消耗的功率增大D.电源输出的功率一定增大图12-63.()如图12-6所示电路中,电源电动势为E,内电阻为r,R1和R2为定值电阻,R3为可变电阻,当R3的滑动头P由a向b端滑动过程中,电压表V1、V2和电流表A1、A2的读数如何变化?4.()(1993年全国高考题)将量程为100A的电流表改装成量程为1 mA的电流表,并用一标准电流表与改装后的电流表串联,对它进行校准.校准时要求通过电流表的电流能从零连续调到1 mA,试按实验要求画出电路图.图12-75.()如图12-7所示,电源电动势E=12 V,内阻r= 0.5 ,R1=2 ,R2=3 ,滑动变阻器的总电阻R0=5 ,试分析:在滑动片K从a端移至b端的过程中,电流表A的示数如何变化?6.()用伏安法测量一个定值电阻的器材规格如下:待测电阻Rx(约100 );直流电流表(量程010 mA、内阻50 );直流电压表(量程03 V、内阻5 k);直流电源(输出电压4 V、内阻不计);滑动变阻器(015 、允许最大电流1 A);开关1个,导线若干.根据器材的规格和实验要求画出实验电路图.参考答案:难点磁场1.(1)U1E (2)0U1E(3)U1=IR并,R并=,I= 得:U1=2.如图121图121歼灭难点训练1.B 2.A、B3.V1示数减小 V2示数增加 A1示数增大 A2示数减小4.如图122图1225.电流表示数由大变小,然后由小变大.6.用伏安法测量电阻有两种连接方式,即电流表的内接法和外接法,由于Rx,故电流表应采用外接法.在控制电路中,若采用变阻器的限流接法,当滑动变阻器阻值调至最大,通过负载的电流最小,Imin=24 mA10 mA,此时电流仍超过电流表的量程,故滑动变阻器必须采用分压接法.如图123所示.图123难点4 变力做功与能量转化功是中学物理中的重要概念,它体现了力对物体的作用在空间上的累积过程.在考纲中属B级.对功尤其是变力做功是近年考查热点,亦是考生应考的难点.难点磁场1.()(1999年全国)一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力所做的功等于A.物体势能的增加量B.物体动能的增加量C.物体动能的增加量加上物体势能的增加量D.物体动能的增加量加上克服重力所做的功图4-2图4-12.()一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图4-1所示.绳的P端拴在车后的挂钩上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车向左加速运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时速度为vB.求车由A移到B的过程中,绳Q端的拉力对物体做的功是多少?3.()如图4-2所示,若在湖水里固定一细长圆管,管内有一活塞,它的下端位于水面上,活塞的底面积S=1 cm2,质量不计.大气压强p0=1.0105 Pa.现把活塞缓慢地提高H=15 m,则拉力对活塞做的功为_ J.(g=10 m/s2)案例探究例1()用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉进入木块内的深度成正比.在铁锤击第一次时,能把铁钉击入木块内1 cm.问击第二次时,能击入多少深度?(设铁锤每次做功相等)命题意图:考查对功概念的理解能力及理论联系实际抽象建立模型的能力.B级要求.错解分析:(1)不能据阻力与深度成正比这一特点,将变力求功转化为求平均阻力的功,进行等效替代.(2)不能类比迁移,采用类似据匀变速直线速度-时间图象求位移的方式,根据F-x图象求功.解题方法与技巧:解法一:(平均力法)图4-3铁锤每次做功都用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,F=-f=kx,可用平均阻力来代替.如图4-3,第一次击入深度为x1,平均阻力=kx1,做功为W1=x1=kx12.第二次击入深度为x1到x2,平均阻力=k(x2+x1),位移为x2-x1,做功为W2=(x2-x1)= k(x22-x12). 两次做功相等:W1=W2.解后有:x2=x1=1.41 cm,x=x2-x1=0.41 cm.图4-4解法二:(图象法)因为阻力F=kx,以F为纵坐标,F方向上的位移x为横坐标,作出F-x图象(图4-4).曲线上面积的值等于F对铁钉做的功.由于两次做功相等,故有:S1=S2(面积),即: kx12=k(x2+x1)(x2-x1),图4-5所以x=x2-x1=0.41 cm例2() 如图4-5所示,置于水平面的平行金属导轨不光滑,导轨一端连接电阻R,其他电阻不计,垂直于导轨平面有一匀强磁场,磁感应强度为B,当一质量为m的金属棒ab在水平恒力F作用下由静止向右滑动时A.外力F对ab棒做的功等于电路中产生的电能B.只有在棒ab做匀速运动时,外力F做的功才等于电路中产生的电能C.无论棒ab做何运动,它克服安培力做的功一定等于电路中产生的电能D.棒ab匀速运动的速度越大,机械能转化为电能的效率越高命题意图:考查考生理解能力、分析综合及推理能力.B级要求.错解分析:对整个物理情景理解不透,对整个物理过程中能量的转化及传递途径理解不透.解题方法与技巧:(能量守恒法)在导体棒的运动过程中外力做的功,用来克服由于发生电磁感应而产生的感应电流的安培力的那一部分转化为电能,又因为有摩擦,还需克服摩擦力做功,转化成内能.所以A、B错,C对;又当匀速运动时,由能量转化的观点,可知=v,B、l、F、R一定,所以 v,即v越大越大,D对.故CD正确.锦囊妙计变力做功的求解方法对于变力做功一般不能依定义式W=Fscos直接求解,但可依物理规律通过技巧的转化间接求解.图4-61.平均力法:如果参与做功的变力,其方向不变,而大小随位移线性变化,则可求出平均力等效代入公式W=scos求解. 2.图象法:如果参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图象.如图4-6,那么图线下方所围成的面积,即为变力做的功.3.动能定理法:在某些问题中,由于力F大小或方向的变化,导致无法直接由W=Fscos求变力F做功的值.此时,我们可由其做功的结果动能的变化来求变力F的功:W=Ek.4.功能关系法:能是物体做功的本领,功是能量转化的量度.由此,对于大小、方向都随时变化的变力F所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解.歼灭难点训练1.()一辆汽车在平直公路上从速度v0开始加速行驶,经时间t后,前进了距离s,此时恰好达到其最大速度vmax,设此过程中发动机始终以额定功率P工作,汽车所受阻力恒为F,则在这段时间里,发动机所做的功为A.Fs B.PtC. mv2max+Fs-mv02D.Ft2.()如图4-7所示,质量为m的物体被细绳牵引着在光滑水平面上做匀速圆周运动,O为一光滑孔,当拉力为F时,转动半径为R;当拉力为8F时,物体仍做匀速圆周运动,其转动半径为,在此过程中,外力对物体做的功为A.7FR/2 B.7FR/4 C.3FR/2 D.4FR图47 图483.()一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置P点很缓慢地移到Q点.如图4-8所示,此时悬线与竖直方向夹角为,则拉力F所做的功为A.mgLcosB.mgL(1-cos)C.FLsinD.FL图4-94.()挂在竖直墙上的画长1.8 m,画面质量为100 g,下面画轴质量为200 g,今将它沿墙缓慢卷起,g=10 m/s2.需做_ J的功.5.()用大小不变、方向始终与物体运动方向一致的力F,将质量为m的小物体沿半径为R的固定圆弧轨道从A点推到B点,圆弧对应的圆心角为60,如图4-9所示,则在此过程,力F对物体做的功为_.若将推力改为水平恒力F,则此过程力F对物体做的功为_.6.()(2001年全国高考,22题)一个圆柱形的竖直的井里存有一定量的水,井的侧面和底部是密闭的.在井中固定插着一根两端开口的薄壁圆管,管和井共轴,管下端未触及井底.在圆管内有一不漏气的活塞,它可沿圆管上下滑动.开始时,管内外水面相齐,且活塞恰好接触水面,如图4-10所示.现用卷扬机通过绳子对活塞施加一个向上的力F,使活塞缓慢向上移动.已知管筒半径 0.100 m,井的半径R2,水的密度1.00103kg/m3,大气压p01.00105 Pa.求活塞上升H9.00 m的过程中拉力F所做的功.(井和管在水面以上及水面以下的部分都足够长.不计活塞质量,不计摩擦,重力加速度g取10 m/s2)图4-10参考答案:难点磁场1.CD 2.mvB2+mg(-1)H 3.100 歼灭难点训练1.BC 2.C 3.B 4.4.5 J 5.F,FR 6.1.65104 J难点5 玻尔原子模型及相关应用玻尔原子模型是中学物理的重要模型之一,以此为背景的高考命题,有较强的抽象性和综合性,是考生应对的难点.难点磁场1.()(1996年全国)根据玻尔理论,氢原子的电子由外层轨道跃迁到内层轨道后A.原子的能量增加,电子的动能减小图191B.原子的能量增加,电子的动能增加C.原子的能量减小,电子的动能减小D.原子的能量减小,电子的动能增加2.()(1995年全国)如图19-1所示,给出氢原子最低的四个能级,氢原子在这些能级之间跃迁即辐射的光子的频率最多有_种,其中最小的频率等于_Hz.(保留两位有效数字)案例探究例1欲使处于基态的氢原子激发,下列措施可行的是A.用10.2 eV的光子照射 B.用11 eV的光子照射C.用14 eV的光子照射 D.用11 eV的光子碰撞命题意图:考查考生对玻尔原子模型的跃迁假设的理解能力及推理能力.B级要求.解题方法与技巧:由玻尔理论的跃迁假设可知,氢原子在各能级间,只能吸收能量值刚好等于两能级之差的光子.由氢原子能级关系不难算出,10.2 eV刚好为氢原子n=1和n=2的两能级之差,而11 eV则不是氢原子基态和任一激发态的能量之差,因而氢原子只能吸收前者被激发,而不能吸收后者.对14 eV的光子,其能量大于氢原子电离能,足可使“氢原子”电离,而不受氢原子能级间跃迁条件限制.由能的转化和守恒定律不难知道,氢原子吸收14 eV的光子电离后产生的自由电子仍具有0.4 eV的动能.另外,用电子去碰撞氢原子时,入射电子的动能可全部或部分地为氢原子吸收,所以只要入射电子的动能大于或等于基态和某个激发态能量之差,也可使氢原子激发,故正确选项为ACD.例2光子能量为E的一束光照射容器中的氢(设氢原子处于n=3的能级),氢原子吸收光子后,能发出频率1、2、3、4、5、6六种光谱线,且123456,则E等于A.h1B.h6C.h(6-1)D.h(1+2+3+4+5+6)命题意图:考查对玻尔理论跃迁假设的理解能力及推理能力.B级要求.错解分析:出现错解的原因有(1)对氢原子跃迁机理理解不透.(2)对量子数为n的氢原子自发辐射产生谱线条数n(n-1)/2这一规律把握不牢,难以执果索因,逆向思维推断氢原子吸收光子后所在能级量子数n=4.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论