



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.4三元一次方程组的解法教学目标: 1知识与技能 会解三元一次方程组,体验“消元”法,感受“三元”化归到“二元”,再由“二元”化归到“一元”的数学思想. 2过程与方法 经历探究三元一次方程组的解题过程,体会其内涵,并掌握方法. 3情感、态度与价值观 培养数学化归思想,使学生真正体验到数学分析的应用价值.教学重难点: 1.重点:掌握三元一次方程组的解法. 2.难点:三元一次方程组如何化归到二元一次方程组.教学方法: 本节课采用“启发式”教学方法,通过“化归思想”引导学生进行新旧知识的迁移教学过程:一、导入新课 前面我们学习了二元一次方程组的解法有些问题,可以设出两个未知数,列出二元一次方程组来求解实际上,有不少问题中含有更多的未知数大家看下面的问题.二、推进新课 小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张? 1题目中有几个未知数,你如何去设未知数? 2根据题意你能找到等量关系吗? 3根据等量关系你能列出方程组吗? 请大家分组讨论上述问题(教师对学生进行巡回指导)。 学生成果展示: 1设1元,2元,5元各x张,y张,z张(共三个未知数) 2三种纸币共12张;三种纸币共22元;1元纸币的数量是2元纸币的4倍 3上述三种条件都要满足,因此可得方程组 教师总结概念:这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组 怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(学生小组交流,探索如何消元) 可以把分别代入,便消去了x,只包含y和z二元了: 解此二元一次方程组得出y、z,进而代回原方程组可求x 教师对学生的想法给予肯定并总结解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程 即三元一次方程组 二元一次方程组 一元一次方程 二、例题讲解 例1:解三元一次方程组 (让学生独立分析、解题,方法不唯一,可分别让学生板演后比较) 解:3+,得11x+10z=35 与组成方程组 把x=5,z=-2代入,得y= 因此,三元一次方程组的解为 归纳:此方程组的特点是不含y,而中y的系数为整数倍关系,因此用加减法从中消去y后,再与组成关于x和z的二元一次方程组的解法最合理反之用代入法运算较烦琐 例2:在等式y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60,求a,b,c的值(师生一起分析,列出方程组后交由学生求解). 解:由题意,得三元一次方程组 -,得a+b=1, -,得4a+b=10 与组成二元一次方程组 解得 把a=3,b=-2代入,得c=-5 因此, 答:a=3,b=-2,c=-5 三、知能训练 1解下列三元一次方程组: 2甲、乙、丙三个数的和是35,甲数的2倍比乙数大,乙数的等于丙数的,求这三个数 解:设甲、乙、丙三个数分别为x、y、z,则 即甲、乙、丙三数分别为10、15、10 四、课堂小结 1学会
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030工业激光器光学系统寿命加速测试方法论报告
- 减免税收申请书
- 2025年甘肃农业大学招聘工作人员考前自测高频考点模拟试题完整答案详解
- 2025-2030工业废水处理技术创新与环保设备市场需求预测咨询报告
- 2025-2030工业大数据分析平台建设与制造效能提升关联报告
- 2025-2030工业大数据分析平台商业模式与制造业客户付费意愿调研报告
- 收到仲裁申请书之日
- 银行放贷延期申请书
- 办理待遇变更申请书
- 转班申请书在技校
- 机加工安全质量培训计划课件
- 2025年全国计算机等级考试三级网络技术模拟题及答案
- 胰岛素储存知识培训课件
- GB 46039-2025混凝土外加剂安全技术规范
- 2025至2030年中国卡丁车俱乐部行业市场调研分析及投资战略咨询报告
- 建设项目环境影响评价分类管理名录(报告书、表、登记表)
- 加油站职业健康危害因素分析
- 2025年杭州市上城区九堡街道社区卫生服务中心招聘编外4人笔试备考试题及答案解析
- 2025年煤矿从业人员安全培训考试题库及答案
- 辽宁省沈阳市2025届高考语文模拟试卷(含答案)
- 《智能建造概论》高职完整全套教学课件
评论
0/150
提交评论