




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年二次函数中考应用题附答案10月21日一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?解:(1)由于抛物线的顶点是 (0,3.5),故可设其解析式为y=ax2+3.5。又由于抛物线过(1.5,3.05),于是求得a=-0.2。抛物线的解析式为y=-0.2x2+3.5。(2)当x=-2.5时,y=2.25。球出手时,他距地面高度是2.25-1.8-0.25=0.20(米)。 评析:运用投球时球的运动轨迹、弹道轨迹、跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。解这类问题一般分为以下四个步骤:(1)建立适当的直角坐标系(若题目中给出,不用重建);(2)根据给定的条件,找出抛物线上已知的点,并写出坐标;(3)利用已知点的坐标,求出抛物线的解析式。当已知三个点的坐标时,可用一般式y=ax2+bx+c求其解析式;当已知顶点坐标为(k,h)和另外一点的坐标时,可用顶点式y=a(x-k)2+h求其解析式;当已知抛物线与x轴的两个交点坐标分别为(x1,0)、(x2,0)时,可用双根式y=a(x-x1)(x-x2)求其解析式;(4)利用抛物线解析式求出与问题相关的点的坐标,从而使问题获解。 10月22日某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数 (1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少? 解:(1)依题意设y=kx+b,则有 所以y=-30x+960(16x32) (2)每月获得利润P=(-30x+960)(x-16) =30(-x+32)(x-16) =30(+48x-512) =-30+1920 所以当x=24时,P有最大值,最大值为1920 答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元 注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一元二次函数求最值 10月23日、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5) (1)求这个二次函数的解析式; (2)该男同学把铅球推出去多远?(精确到0.01米, ) 解:(1) 设二次函数的解析式为 ,顶点坐标为 (6,5) A(0,2)在抛物线上 (2) 当时, (不合题意,舍去) (米) 答:该同学把铅球抛出13.75米. 10月24日某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价 (元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润 与每件的销售价 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。 在这个问题中,每件服装的利润为( ),而销售的件数是( +204),那么就能得到一个 与之间的函数关系,这个函数是二次函数. 要求销售的最大利润,就是要求这个二次函数的最大值. 解:(1)由题意,销售利润 与每件的销售价之间的函数关系为 =( 42)(3204),即 =3 2+ 8568 (2)配方,得 =3(55)2+507 当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元. 10月25日某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误? 并通过计算说明理由 分析:(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,10),最高点的纵点标为. (2)求出抛物线的解析式后,要判断此次跳水会不会失误,就是要看当该运动员在距池边水平距离为米. 时,该运动员是不是距水面高度为5米. 解:(1)在给定的直角坐标系下,设最高点为A,入水点为B,抛物线的解析式为 . 由题意,知O(0,0),B(2,10),且顶点A的纵坐标为. 解得 或 抛物线对称轴在轴右侧, 又抛物线开口向下,a0,b0 抛物线的解析式为 (2)当运动员在空中距池边的水平距离为米时, 即 时, 此时运动员距水面的高为 因此,此次跳水会失误.10月26日某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可买出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系:转让数量(套) 120011001000900800700600500400300200100 价格(元/套) 240250 260 270 280290 300310 320330 340350 方案1:不转让A品牌服装,也不经销B品牌服装;方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装;方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。问:经销商甲选择方案1与方案2一年内分别获得利润各多少元?经销商甲选择哪种方案可以使自己一年内获得最大利润?若选用方案3,请问他转让给经销商乙的A品牌服装的数量是多少(精确到百套)?此时他在一年内共得利润多少元?解:经销商甲的进货成本是=480000(元)若选方案1,则获利1200600-480000=240000(元) 若选方案2,得转让款1200 240=288000元,可进购B品牌服装 套,一年内刚好卖空可获利1440500-480000=240000(元)。 设转让A品牌服装x套,则转让价格是每套 元,可进购B品牌服装 套,全部售出B品牌服装后得款 元,此时还剩A品牌服装(1200-x)套,全部售出A品牌服装后得款600(1200-x)元,共获利,故当x=600套时,可的最大利润330000元。10月27日、某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量(件)与每件的销售价 (元)满足一次函数: (1)写出商场卖这种商品每天的销售利润 与每件的销售价间的函数数关系式. (2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少? 当定价为42元时,最大销售利润为432元. 10月28日如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形的边 米,面积为 平方米. (1)求: 与 之间的函数关系式,并求当米2时, 的值; (2)设矩形的边 米,如果满足关系式 即矩形成黄金矩形,求此黄金矩形的长和宽. (1) 当 时, (2)当 则 又 由、解得 , 其中20不合题意,舍去, 当矩形成黄金矩形时,宽为 ,长为. 10月29日我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价(元)与上市时间(天)的关系可以近似地用如图(1)中的一条折线表示绿茶的种植除了与气候、种植技术有关外,其种植的成本单价(元)与上市时间(天)的关系可以近似地用如图(2)的抛物线表示2040608010012018020406080100120140160Ot(天)y (天)2040608011018060Oz(元)15014016050402010图(1)90图(2)90(180,92)140160100120t(天)(1)直接写出图(1)中表示的市场销售单价(元)与上市时间(天)()的函数关系式;(2)求出图(2)中表示的种植成本单价(元)与上市时间(天)()的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元500克)答案:解:(1)依题意,可建立的函数关系式为:(2)由题目已知条件可设图象过点, (3)设纯收益单价为元,则=销售单价成本单价故化简得当时,有时,最大,最大值为100;当时,由图象知,有时,最大,最大值为;当时,有时,最大,最大值为56综上所述,在时,纯收益单价有最大值,最大值为100元10月30日如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半(1)求足球开始飞出到第一次落地时,该抛物线的表达式(2)足球第一次落地点距守门员多少米?(取)(3)运动员乙要抢到第二个落点,他应再向前跑多少米?(取)答案:解:(1)(3分)如图,设第一次落地时,抛物线的表达式为 由已知:当时即 表达式为 (或)(2)(3分)令(舍去)足球第一次落地距守门员约13米 (3)(4分)解法一:如图,第二次足球弹出后的距离为根据题意:(即相当于将抛物线向下平移了2个单位)解得 (米)解法二:令解得(舍),点坐标为(13,0)设抛物线为 将点坐标代入得:解得:(舍去), 令(舍去),(米)解法三:由解法二知,所以所以答:他应再向前跑17米10月31日荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为;另外每公顷种植蔬菜需种子、化肥、农药等开支万元每公顷蔬菜年均可卖万元(1)基地的菜农共修建大棚(公顷),当年收益(扣除修建和种植成本后)为(万元),写出关于的函数关系式(2)若某菜农期望通过种植大棚蔬菜当年获得万元收益,工作组应建议他修建多少公项大棚(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施年内不需增加投资仍可继续使用如果按年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议答案:(1) (2)当时,即,从投入、占地与当年收益三方面权衡,应建议修建公顷大棚 (3)设年内每年的平均收益为(万元)(10分)不是面积越大收益越大当大棚面积为公顷时可以得到最大收益 建议:在大棚面积不超过公顷时,可以扩大修建面积,这样会增加收益大棚面积超过公顷时,扩大面积会使收益下降修建面积不宜盲目扩大当时,大棚面积超过公顷时,不但不能收益,反而会亏本(说其中一条即可)11月1日某商场购进一种单价为元的篮球,如果以单价元售出,那么每月可售出个根据销售经验,售价每提高元销售量相应减少个(1)假设销售单价提高元,那么销售每个篮球所获得的利润是_元;这种篮球每月的销售量是_个(用含的代数式表示)(4分)(2)元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?(8分)答案:(1),; (2)设月销售利润为元,由题意, 整理,得 当时,的最大值为, 答:元不是最大利润,最大利润为元,此时篮球的售价为元11月2日一座隧道的截面由抛物线和长方形构成,长方形的长为,宽为,隧道最高点位于的中央且距地面,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高,宽,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点设抛物线的方程为将三点的坐标代入抛物线方程解得抛物线方程为(2)令,则有解得货车可以通过(3)由(2)可知货车可以通过11月3日某企业信息部进行市场调研发现:信息一:如果单独投资种产品,则所获利润(万元)与投资金额(万元)之间存在正比例函数关系:,并且当投资5万元时,可获利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业级别的标注岗位面试题
- 新巡防员招聘面试题解析:如何准备简历与面试技巧
- 计算思维与人工智能基础 习题及答案 - 第9章
- 面试官您来选职业面试题
- 学生就业必 备:高中干部面试题题目
- 销毁渔具发言稿
- 养容专业知识培训内容课件
- 企业来村发言稿
- 婚礼主持人发言稿
- 乐器大赛发言稿范文
- 2024-2030年中国膏药市场风险评估与投资战略规划策略分析研究报告
- 系统解剖学全册配套完整课件
- 部编版语文三年级上册第三单元大单元教学设计 核心素养目标
- 铁路桥涵工程施工安全技术规程(TB 10303-2020)
- 社会化工会工作者考试试卷及答案
- 计划管理培训课件
- 整体租赁底商运营方案(技术方案)
- 糖尿病的运动治疗课件
- 海南省生活垃圾分类收集屋(亭)配置指南
- 实习生综合考评表
- 职业健康检查委托协议书示范文本模板
评论
0/150
提交评论