1.3二项式定理(通用).doc_第1页
1.3二项式定理(通用).doc_第2页
1.3二项式定理(通用).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3.1二项式定理评测练习一选择题1在的展开式中,的系数为( ) A B C D2已知(的展开式的第三项与第二项的系数的比为112,则n是( )A10 B11 C12 D133.在的展开式中,的幂指数是整数的共有( )A项 B项 C项 D项4.的展开式中项的系数是( )A B C D5.如果,那么的值等于( )A.1 B.2 C. 0 D.26.若的展开式中第四项为常数项,则( )A B C D二填空题7.二项式的展开式中的常数项为 8.设,则 9.在的展开式中,所有项的系数和为,则的系数等于 三简答题10.若展开式中第二、三、四项的二项式系数成等差数列(1)求n的值;(2)此展开式中是否有常数项。11.已知二项式,(nN)的展开式中第5项的系数与第3项的系数的比是10:1;求展开式中各项的系数和。参考答案1. 选D2. 选C.【解析】,3. 选C.【解析】,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C4.选A【解析】由通式,令,则展开式中项的系数是5.选A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A6.选B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B.7.112【解析】由二项式通项可得,(r=0,1,8),显然当时,故二项式展开式中的常数项为112.8.【解析】,所以令,得到,所以9.【解析】当时,解得,那么含的项就是,所以系数是-270.10.解:()n = 7 ()无常数项11.解:第5项的系数与第3项的系数的比是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论