数学人教版七年级下册实数第一课时.doc_第1页
数学人教版七年级下册实数第一课时.doc_第2页
数学人教版七年级下册实数第一课时.doc_第3页
数学人教版七年级下册实数第一课时.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6.3 实数 第1课时(新授课) 莲花中学 张洪杰教学目标:1. 学生了解无理数和实数的概念。2. 学生知道实数和数轴上的点具有一一对应的关系。初步体会数形结合的数学思想教学重点:实数的意义和实数的分类。教学难点:学生对无理数的认识。教学过程:一、导入新课:把下列有理数写成小数的形式,它们有什么特征?发现上面的有理数都可以写成有限小数或无限循环小数的形式即:归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,把无限不循环小数叫做无理数。比如等都是无理数。也是无理数。二、新课:1、任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数,也是无理数;有理数和无理数统称为实数 像有理数一样,无理数也有正负之分。例如,是正无理数,是负无理数。由于非0有理数和无理数都有正负之分,实数也可以这样分类: 例1下列实数中,哪些是有理数?哪些是无理数?5,3.14,0,- ,0.1010010001(相邻两个1之间0的个数逐次加1)探究:(1)我们知道,每个有理数的点都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示无理数的点么? (2)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O对应的数是多少? 每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.有理数关于相反数和绝对值的意义同样适合于实数.判断下列说法是否正确:1.实数不是有理数就是无理数。 ( )2.无限小数都是无理数。 ( )3.无理数都是无限小数。 ( )4.带根号的数都是无理数。 ( ) 5.两个无理数之和一定是无理数。 ( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。 ( )把下列各数填入相应的集合内:有理数集合: ;无理数集合: ;正实数集合: ;负实数集合: 练习1下列各数中,哪些是有理数?哪些是无理数?在下列每一个圈里,至少填入三个适当的数 有理数集合 无理数集合三、小结 问题1 举例说明有理数和无理数的特点是什么?问题2 实数是由哪些数组成的?问题3 实数与数轴上的点有什么关系?四、作业:必做题:习题6.3第1、2、3题; 选做题:教科书复习题6第6题。 5、 教学反思: 上完实数这节课后,我常常有这样的困惑:学生巩固题做了几十遍,数学成绩却不见提高!这不能不引起我的反思了。确实,出现这种情况涉及方方面面,但我认为其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题归例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。 事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论