




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
近年来全国各地中考试题中频频出现探索型问题,这类问题由于没有明确的结论,要求考生通过自己的观察、联想、分析、比较、归纳、概括来发现解题条件或结论或结论成立的条件,因而对考生的能力要求较高。开放型试题重在开发思维,促进创新,提高数学素养,所以是近几年中考试题的热点考题。观察、实验、猜想、论证是科学思维方法,是新课标思维能力重要的内容,学习中应重视并应用. 探索型问题具有较强的综合性,因而解决此类问题用到了所学过的整个初中数学知识经常用到的知识是:一元一次方程、平面直角坐标系、一次函数与二次函数解析式的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、相似三角形、解直角三角形等其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力一. 常见的问题的类型: 1. 条件探索型结论明确,而需探索发现使结论成立的条件的题目。 2. 结论探索型给定条件,但无明确结论或结论不惟一。 3. 存在探索型在一定条件下,需探索发现某种数学关系是否存在。 4. 规律探索型发现数学对象所具有的规律性与不变性的题目。二. 常用的解题切入点:由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律 2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致3分类讨论法当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果4类比猜想法即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用2、【典例精析】中考探索性试题的几种类型探索性问题的试题是指给出一列数、一列等式、一列图形的前几项,然后让我们通过归纳加工、猜想,推出一般的结论,或者是给出一个图形,要求我们探索图形成立的条件、变化图形的不变的规律性。这类问题需要学生通过对题目进行深刻理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理 题型一:规律探索例1:观察算式:24158303548?图2-2-3112;13422;135932;13571642;135792552 ; 用代数式表示这个规律(n为正整数):13579(2n-1)_例2观察图223中一列有规律的数,然后在“?”处填上一个合适的数,这个数是_例3:如图222,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:图2-2-2第1个 第2个 第3个 第4个图案中有白色纸片_张; 第n个图案台有白色纸片_张例4:如图,将第一个图(图)所示的正三角形连结各边中点进行分割,得到第二个图(图);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图);再将第三个图中最中间的小正三角形按同样的方式进行分割,则得到的第五个图中,共有_个正三角形题型二:探索研究例5:(1)观察一列数2,4,8,16,32,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_;根据此规律,如果(为正整数)表示这个数列的第项,那么_,_;(2)如果欲求的值,可令将式两边同乘以3,得_由减去式,得_(3)用由特殊到一般的方法知:若数列,从第二项开始每一项与前一项之比的常数为,则_(用含的代数式表示),如果这个常数,那么_(用含的代数式表示)例6:观察下面的变形规律: 1; ;解答下面的问题:(1)若n为正整数,请你猜想 ;(2)证明你猜想的结论;第17题ADBADCFEBADA1A2A3B1B2B3(3)求和: .例7:如图,ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去利用这一图形,能直观地计算出_ 例8:问题:已知ABC中,BAC=2ACB,点D是ABC内的一点,且AD=CD,BD=BA。 探究DBC与ABC度数的比值。 请你完成下列探究过程: 先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。 (1) 当BAC=90时,依问题中的条件补全右图。 观察图形,AB与AC的数量关系为 ; 当推出DAC=15时,可进一步推出DBC的度数为 ; 可得到DBC与ABC度数的比值为 ; (2) 当BAC90时,请你画出图形,研究DBC与ABC度数的比值 是否与(1)中的结论相同,写出你的猜想并加以证明。题型三:结论探索例9: 平面内的两条直线有相交和平行两种位置关系.(1)AB平行于CD如图a,点P在AB、CD外部时,由ABCD,有B=BOD,又因BOD是POD的外角,故BOD=BPD +D,得BPD=B-D如图b,将点P移到AB、CD内部,以上结论是否成立?,若不成立,则BPD、B、D之间有何数量关系?请证明你的结论;图aO图b(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则BPDBDBQD之间有何数量关系?(不需证明);(3)根据(2)的结论求图d中A+B+C+D+E+F的度数图c图dG例10:将两块全等的含30角的三角尺如图1摆放在一起,设较短直角边为1图1图2图3图4(1)四边形ABCD是平行四边形吗?说出你的结论和理由:_(2)如图2,将RtBCD沿射线BD方向平移到RtB1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:_(3)在RtBCD沿射线BD方向平移的过程中,当点B的移动距离为_时,四边形ABC1D1为矩形,其理由是_;当点B的移动距离为_时,四边形ABC1D1为菱形,其理由是_(图3、图4用于探究)题型四:阅读分析例11:我们知道:有两条边相等的三角形叫做等腰三角形类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在中,点分别在上,设相交于点,若,请你写出图中一个与相等的角,并猜想图中哪个四边形是等对边四边形;(3)在中,如果是不等于的锐角,点分别在上,且探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论例12.如果10n,那么称b为n的劳格数,记为bd (n),由定义可知:10n与bd (n)所表示的是b、n两个量之间的同一关系(1)根据劳格数的定义,填空:d(10) ,d(10) ;(2)劳格数有如下运算性质:若m、,n为正数,则d(mn) d(m)d(n),d(n)d(m)一d(n)根据运算性质,填空: (a为正数),若d(2) 0.3010,则d(4) ,d(5),d(0. 08) ;(3)下表中与数x对应的劳格数d (x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正x1.5356891227d(x)3abc2abac1abc33a3c4a2b3b2c6a3b巩固练习:1.设a13212,a25232,an(2n1)2(2n1)2 (n为大于0的自然数)(1) 探究an是否为8的倍数,并用文字语言表述你所获得的结论;(2) 若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出a1,a2,an,这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,an为完全平方数(不必说明理由) 2.如图224,A1A2B是直角三角形,且A1A2A2Ba,A2A3A1B,垂足为A3,A3A4A2B,垂足为A4,A4A5A3B,垂足为A5,An1An2AnB,垂足为An2,则线段An1An2(n为自然数)的长为()(A) (B)(C) (D) A2A1A3A4A6A5B图2-2-4图2-2-63如图226,将边长为1的正方形OAPB沿x轴正方向连续翻转2 006次,点P依次落在点P1,P2,P3,P4,P2006的位置,则P2006的横坐标x2006_4如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)根据这个规律探索可得,第个点的坐标为_O(1,0)(2,0)(3,0)(4,0)(5,0)x(5,1)(4,1)(3,1)(2,1)(3,2)(4,2)(4,3)(5,4)(5,3)(5,2)y第14题图5.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体的模型,完成表格中的空格:多面体顶点数(V)面数(F)棱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2025年标准)国家正规买断协议书
- 文化传播公司业务运营与管理方案
- 采购与供应商管理实战案例分析
- (2025年标准)关于使用营地协议书
- (2025年标准)关于房产产权协议书
- 航空行业航空器维护与飞行安全保障方案
- 福建省厦门市集美高中2026届高三化学第一学期期末联考试题含解析
- 2026届内蒙古自治区包头市化学高二上期中检测试题含解析
- 2026届辽宁省五校高二化学第一学期期末检测模拟试题含答案
- 2026届湖南省邵阳市邵东县第三中化学高三上期中考试试题含解析
- 2026高考英语 写作-倡议信 复习课件
- 2025广东广州市从化区社区专职人员招聘33人笔试参考题库附答案解析
- 建材买卖(橱柜订购类)合同协议书范本
- 2025年小学英语教师业务理论考试试题及答案
- 中小学基孔肯雅热应急防控预案
- 港口无人驾驶行业深度报告:奇点已至蓝海启航
- 纪法考试题库及答案解析
- 免疫复合物沉积-洞察及研究
- 信息安全评估管理办法
- 销售岗位职级管理办法
- 北师大版五年级下册数学口算题题库1200道带答案可打印
评论
0/150
提交评论