九年级数学(下)教案.doc_第1页
九年级数学(下)教案.doc_第2页
九年级数学(下)教案.doc_第3页
九年级数学(下)教案.doc_第4页
九年级数学(下)教案.doc_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010/2011学年度第二学期九( )班数学教学计划学生情况分析:班学生本学期共 人,其中男生 人,女生 人,学生的基础较好,通过上学期期末检测结果来看,及格率和优秀率较好,且多数学生有较强的上进心和自学性,本学期是毕业的最后一学期,相信大多数学生会迎难而上,在教学过程中也要本着这一原则,希望在今年的中考中取得好成绩。教材分析:九年级数学下册有四章,分别是二次函数、相似、锐角三角函数和投影与视图。二次函数是学生在学过数、正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节,本章通过介绍二次函数及其图象,得出二次函数的有关性质,通过探讨二次函数与一元二次方程的联系,加深对二次函数的认识,通过设置探究性栏目,展现二次函数的应用,进一步理解函数的性质,体会函数思想,二次函数是一类最优化问题的数学模型,例如,本章所提及的求最大利润、最大面积等实际问题;二次函数曲线抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线的路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥,抛物线型遂道等。本章的内容在日常生活中和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。相似这一章,学生已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的全等变换,如平移、轴对称、旋转等,本章将在前面的基础上进一步研究一种变换相似,研究相似变换的性质,相似三角形的判定等,并进一步研究一种特殊的相似变换位似,能够利用位似将一个图形放大或缩小等,本章共有三小节内容:第一节“图形的相似”主要是相似的有关概念和性质,它是进一步研究相似三角形的基础;第二小节“相似三角形”主要研究相似三角形的判定方法,相似三角形在测量中的应用以及相似三角形的周长和面积;第三小节“位似”,主要内容是位似的有关概念、位似图形的画法以及平面直角坐标系中的位似变换,本章通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。“锐角三角函数”属于三角学,是数学课程标准中“空间与图形”领域的重要内容,本章是在学生已学了一次函数、反比例函数和二次函数的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这部分内容包括锐角三角函数的概念,以及利用锐角三角函数解直角三角形等内容,锐角三角形为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会,研究锐角三角形的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此,相似三角形和勾股定理等是学习本章的直接基础,通过“锐角三角函数”的学习,让学生进一步认识函数,体会函数的变化与对应思想,通过解直角三角形的学习,让学生体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受。“投影与视图”这一章主要学习:投影的基础知识,包括投影、平行投影、中心投影、正投影等概念,正投影的成像规律;视图、三视图等概念,三视图的位置和度量规定,一些基本几何体的三视图,简单立体图形与它的三视图的相互转化,课题学习;制作立体模型,这是由三视图向立体图形转化的实践活动,本章从投影的角度对如何用三视图这样的平面图形来表示三维立体图形进行进一步讨论,通过讨论简单立体图形与它的三视图的相互转化,使学生经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力,通过制作立体模型的课题学习,在实际动手中进一步加深对投影和视图知识的认识,培养学生在实践活动中手脑结合的能力。教学目的和要求二次函数教学目标:(1) 通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。(2) 会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。(3) 会根据公式确定图象的顶点、开口方向和对称轴,并能解决简单的实际问题。(4) 掌握二次函数与一元二次方程之间的关系,会利用二次函数的图象求一元二次方程的近似解。相似的教学目标:(1) 通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。(2) 了解两个三角形相似的概念,探索两个三角形相似的条件。(3) 了解图形的位似,能够利用位似将一个图形放大或缩小。(4) 通过典型实例观察和认识现实生活中的物体的相似,利用图形的相似解决一些实际问题。(5) 在同一直角坐标系中,感受图形变换后点的坐标的变化特点,锐角三角函数教学目标。锐角三角函数教学目标:(1) 了解锐角三角函数的概念,能够正确应用sinA、cosA、tnaA表示直角三角形中两边的比,记忆、的正弦、余弦、正切的函数值,并会由一个特殊角的三角函数值说出这个角。(2) 能够正确使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角。(3) 理解直角三角形中边与边的关系、角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题。(4) 通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角形的学习,体会数学在解决实际问题中的作用。教学重、难点:二次函数重点:理解二次函数的概念;探索二次函数的图象和性质;理解二次函数与一元二次方程的关系及求二次函数的关系式;通过对实际问题的情境分析,确定二次函数的表达式,以及运用二次函数的知识解决实际问题。难点:从实际问题中列二次函数表达式;理解其图象的关系及其性质。相似重点是相似的性质和判定。难点:是相似判定的证明,应用相似三角形的性质解决实际问题。锐角三角函数重点:锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值;运用三角函数解直角三角形,并解决与三角形有关的实际问题。难点:锐角三角函数的概念;特殊角的三角函数值。投影与视图重点:以分析实际例子为背景,认识投影和视图的基本概念和性质;通过讨论简单立体图形与它的三视图的相互转化,使学生经历画图识图等过程,分析立体图形与平面图形之间的联系,提高空间想象能力,通过制作立体模型的课题学习,在实际动手中进一点加深对投影和视图知识的认识,加强在实际活动中动手动脑理论结合实际的能力。难点:正确理解投影和视图的基本概念和基本性质,能根据三视图描述基本几何体成实物模型,并会用基本几何体与其三视图展开图之间的关系解决一些实际问题,让学生经历观察画图、想象、制作模型的认识过程。教学方法和措施:(1) 注意由浅入深,循序渐进地理解基本概念。(2) 注意与实际问题的联系,体现数学建模的思想。(3) 恰当使用多媒体技术。(4) 注意突出探索过程,重视试验操作与逻辑推理的有机结合。(5) 认真钻研教材、教法,选取例子宜深入浅出,让教学内容一脉贯通。(6) 注意数形结合,自然体现数与形之间的联系。课时安排:本学期共21周,正式上课为15周,每周5课时,共75课时。二次函数10课时;相似 9课时;三角函数 8课时;投影与视图 8课时小结、复习、中考复习 40课时教学进度表: 周次起讫时间工 作 内 容课时备 注预备周2月10日2月17日开学12月18日2月19日二次函数522月20日2月26日二次函数用函数的观点看一元二次方程实际问题与二次函数532月27日3月5日实际问题与二次函数小结复习检测543月6日3月12日图形的相似相似三角形553月13日4月19日相似三角形位似463月20日3月26日小结复习章节检测第一轮模考573月27日4月2日锐角三角函数复习584月3日4月9日解直角三角形复习594月10日4月16日第二轮模考4104月17日4月23日章节复习检测114月24日4月30日试卷评析,投影三视图第三轮模考5125月1日5月7日三视图课题学习4五一135月8日5月14日章节复习检测第四轮模考5145月15日5月21日中考总复习第五轮模考155月22日5月28日中考复习165月28日6月4日中考复习176月4日6月10日中考复习186月12日6月18日中考196月19日6月25日工作总结206月26日7月2日期末考试217月3日7月9日中考及期末考试分析第二十六章 二次函数1内容结构特点本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,昌函数知识螺旋发展的一个重要环节,本章通过介绍二次函数及其图象,得出二次函数的有关性质,通过探讨二次函数与一元一次方程的联系,加深对二次函数的认识,通过设置探究栏目,展现二次函数的应用,进一步理解函数的性质、体会函数的思想,二次函数是一类最优级化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题;二次函数曲线抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径;同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等,本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。2教材的地位及作用二次函数是在学生学过的数、式、方程和函数的基本知识、一次函数的基础上展开的,二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通,二次函数的图象和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用,它是前面所学知识的应用和提高,又是高中进一步学习数学的基础,另外教学中所渗透的数形结合、从特殊到一般的思想方法对学生今后观察问题、研究问题和解决问题是十分有益的。3教学重点和教学难点教学重点:(1)理解二次函数概念; (2)探索二次函数的图象和性质; (3)理解二次函数与一元二次方程的关系及求二次函数的关系式; (4)通过对实际问题的情境分析,确定二次函数的表达式,以及运用二次函数的解决简单的实际问题。教学难点:(1)从实际问题中列出二次函数表达式。(2)理解二次函数的图象关系及运用图象性质进行解题。4教学目标:(1)通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。(2)会用描点法画出二次函数的图象,能从图象上认识二次函数的性质,(3)会根据公式确定图象的顶点、开口方向和对称轴,并能解决简单的实际问题,(4)掌握二次函数与一元二次方程之间的关系,会利用二次函数的图象求一元二次方程的近似解。26.1二次函数(1)学情分析:学生已经学习了一次函数的相关知识,并结合实际的情境认识了一次函数的意义、图象、性质及一元二次方程等知识,能利用一次函数的思想解决简单的实际问题,为学习二次函数奠定了基础。教学目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:一、试一试 1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2试将计算结果填写在下表的空格中,AB长x(m)123456789BC长(m)12面积y(m2)48 2x的值是否可以任意取?有限定范围吗? 3我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式, 对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 x 10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(202x)(0 x 10)就是所求的函数关系式二、提出问题 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答: 1商品的利润与售价、进价以及销售量之间有什么关系? 利润=(售价进价)销售量 2如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? 108=2(元),(108)100=200(元) 3若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?(108x);(100100x) 4x的值是否可以任意取?如果不能任意取,请求出它的范围, x的值不能任意取,其范围是0x2 5若设该商品每天的利润为y元,求y与x的函数关系式。 y=(108x) (100100x)(0x2) 将函数关系式y=x(202x)(0 x 10化为: y=2x220x (0x10)(1) 将函数关系式y=(108x)(100100x)(0x2)化为: y=100x2100x20D (0x2)(2) 三、观察;概括 1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答; (1)函数关系式(1)和(2)的自变量各有几个? (各有1个) (2)多项式2x220和100x2100x200分别是几次多项式? (分别是二次多项式) (3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的) (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2二次函数定义:形如y=ax2bxc (a、b、c是常数,a0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项四、课堂练习1.(口答)下列函数中,哪些是二次函数? (1)y=5x1 (2)y=4x21 (3)y=2x33x2 (4)y=5x43x1 2P3练习第1,2题。五、小结 1请叙述二次函数的定义 2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。六、作业:教材习题26.1 2教学反思:本课时整合了近几年出现的新的教学模式,反复强调学生为主体,一切教学行为都是为了学生的发展,本节课的出发点就是依照新课程的理念,比如,运用网络技术引起的学生兴趣,让学生动起来,成为课堂的主人,设计连环问题拓展学生思维,使每一个学生都有收获等,主要表现为以下几个方面:1.创设情境,激发求知欲这一环节注重引入二次函数概念的现实背景,让学生感受其实际意义,激发学生的学习兴趣,使学生对二次函数有了初步的认识,同时培养了学生的观察能力.2.温故知新,紧抓本质这一环节遵循以教师为主导,学生为主体,以训练为主线的教学原则,由浅入深、循序渐进地理解二次函数的概念,注重与学生已有知识的联系,引导学生与一次函数的学习联系、比较,经历对知识拓展、归纳、更新的过程,让学生参与知识的发生、发展过程,注意沟通二次函数和一元二次方程的联系和相互转化,提供学生进行探究性学习的题材,重视学生对知识综合应用能力的培养,并且在其中还渗透着对比、归纳等数学思想。3联系实际,培养能力从学生感兴趣的实际问题出发,鼓励学生通过合作、交流解决问题,培养学生的合作意识和交流能力,帮助学生树立正确的人生观和价值观。26.1二次函数(2)学情分析:学生已经有了函数图象的知识基础,尤其对一次函数的图象及其画法,本节课是在复习前面知识的基础上,用同样的方法、去探索二次函数的图象,并通过自己动手去画函数图象,激发学生的学习兴趣,培养学生的动手操作能力,通过自己去画进一步感受二次函数的图象,经过观察、对比、归纳得到二次函数的y=ax2的性质。教学目标: 1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯重点难点:重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。教学过程:一、提出问题 1,同学们可以回想一下,一次函数的性质是如何研究的? (先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质) 2我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么? (可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象) 3一次函数的图象是什么?二次函数的图象是什么?二、范例 例1、画二次函数y=ax2的图象。解:(1)列表:在x的取值范围内列出函数对应值表:x3210123y9410149 (2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点 (3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。抛物线概念:像这样的曲线通常叫做抛物线。顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点三、做一做 1在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别? 2在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么? 3将所画的四个函数的图象作比较,你又能发现什么? 对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。 对于2,教师要继续巡视,指导学生画函数图象,两个函数的图象的特点;教师可引导学生类比1得出。 对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,0)四、归纳、概括函数yx2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数yx2、y=-x2、y2x2、y=-2x2的图象的共同特点,可猜想: 函数y=ax2的图象是一条_,它关于_对称,它的顶点坐标是_。 如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么? 让学生观察yx2、y2x2的图象,填空; 当a0时,抛物线y=ax2开口_,在对称轴的左边,曲线自左向右_;在对称轴的右边,曲线自左向右_,_是抛物线上位置最低的点。 图象的这些特点反映了函数的什么性质?先让学生观察下图,回答以下问题; (1)XA、XB大小关系如何?是否都小于0? (2)yA、yB大小关系如何? (3)XC、XD大小关系如何?是否都大于0? (4)yC、yD大小关系如何? (XAXB,且XA0,XByB;XC0,XD0,yCyD) 其次,让学生填空。 当XO时,函数值y随X的增大而_;当X_时,函数值y=ax2 (a0)取得最小值,最小值y=_ 以上结论就是当a0时,函数y=ax2的性质。 思考以下问题: 观察函数y-x2、y=-2x2的图象,试作出类似的概括,当aO时,抛物线yax2有些什么特点?它反映了当aO时,函数y=ax2具有哪些性质? 让学生讨论、交流,达成共识,当aO时,抛物线y=ax2开口向上,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点抛物线上位置最高的点。图象的这些特点,反映了当aO时,函数y=ax2的性质;当xO时,函数值y随x的增大而减小,当x=0时,函数值yax2取得最大值,最大值是y0。五、课堂练习:P6练习1、2、3、4。六、作业: 1如何画出函数y=ax2的图象? 2函数yax2具有哪些性质? 3谈谈你对本节课学习的体会。教学反思:在这节课的教学中除了以前用过的教学手段外,还注入了现代教学手段,例如用多媒体展示函数图像的画法,扩大了受教育面,减少了教学难度,提高了教学26.1 二次函数(3)教学目标: 1、使学生能利用描点法正确作出函数yax2b的图象。2、让学生经历二次函数yax2bxc性质探究的过程,理解二次函数yax2b的性质及它与函数yax2的关系。重点难点:会用描点法画出二次函数yax2b的图象,理解二次函数yax2b的性质,理解函数yax2b与函数yax2的相互关系是教学重点。正确理解二次函数yax2b的性质,理解抛物线yax2b与抛物线yax2的关系是教学的难点。教学过程:一、提出问题1二次函数y2x2的图象是_,它的开口向_,顶点坐标是_;对称轴是_,在对称轴的左侧,y随x的增大而_,在对称轴的右侧,y随x的增大而_,函数yax2与x_时,取最_值,其最_值是_。 2二次函数y2x21的图象与二次函数y2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究? (画出函数y2x2和函数y2x2的图象,并加以比较) 问题2,你能在同一直角坐标系中,画出函数y2x2与y2x21的图象吗? 教学要点 1先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y2x2的图象。 2教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y2x21的对应值表,并让学生画出函数y2x21的图象 3教师写出解题过程,同学生所画图象进行比较。 解:(1)列表:x3210123yx2188202818yx211993l3919 (2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数y2x2和y2x21的图象。(图象略) 问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系? 教师引导学生观察上表,当x依次取3,2,1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y2x21的函数值都比函数y2x2的函数值大1。 教师引导学生观察函数y2x21和y2x2的图象,先研究点(1,2)和点(1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y2x21的图象上的点都是由函数y2x2的图象上的相应点向上移动了一个单位。 问题4:函数y2x21和y2x2的图象有什么联系? 由问题3的探索,可以得到结论:函数y2x21的图象可以看成是将函数y2x2的图象向上平移一个单位得到的。 问题5:现在你能回答前面提出的第2个问题了吗? 让学生观察两个函数图象,说出函数y2x21与y2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y2x2的图象的顶点坐标是(0,0),而函数y2x21的图象的顶点坐标是(0,1)。 问题6:你能由函数y2x2的性质,得到函数y2x21的一些性质吗? 完成填空: 当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大,当x_时,函数取得最_值,最_值y_ 以上就是函数y2x21的性质。三、做一做问题7:先在同一直角坐标系中画出函数y2x22与函数y2x2的图象,再作比较,说说它们有什么联系和区别? 教学要点 1在学生画函数图象的同时,教师巡视指导; 2让学生发表意见,归纳为:函数y2x22与函数y2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y2x22的图象可以看成是将函数y2x2的图象向下平移两个单位得到的。 问题8:你能说出函数y2x22的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗? 教学要点 1让学生口答,函数y2x22的图象的开口向上,对称轴为y轴,顶点坐标是(0,2); 2分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大,当x0时,函数取得最小值,最小值y2。 问题9:在同一直角坐标系中。函数yx22图象与函数yx2的图象有什么关系? 要求学生能够画出函数yx2与函数yx22的草图,由草图观察得出结论:函数y1/3x22的图象与函数yx2的图象的开口方向、对称轴相同,但顶点坐标不同,函数yx22的图象可以看成将函数yx2的图象向上平移两个单位得到的。 问题10:你能说出函数yx22的图象的开口方向、对称轴和顶点坐标吗? 函数yx22的图象的开口向下,对称轴为y轴,顶点坐标是(0,2) 问题11:这个函数图象有哪些性质? 让学生观察函数yx22的图象得出性质:当x0时,函数值y随x的增大而增大;当x0时,函数值y随x的增大而减小;当x0时,函数取得最大值,最大值y2。四、练习:P9 练习1、2、3。五、小结1在同一直角坐标系中,函数yax2k的图象与函数yax2的图象具有什么关系? 2你能说出函数yax2k具有哪些性质?六、作业:1P19习题262 1(1)2选用课时作业优化设计第一课时作业优化设计 1分别在同一直角坐标系中,画出下列各组两个二次函数的图象。 (1)y2x2与y2x22; (2)y3x21与y3x21。 2.在同一直角坐标系内画出下列二次函数的图象, yx2,yx22,yx22 观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置。 你能说出抛物线yx2k的开口方向及对称轴、顶点的位置吗? 3根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线yx2得到抛 物线yx22和yx22? 4试说出函数yx2,yx22,yx22的图象所具有的共同性质。26.1二次函数(4)教学目标: 1使学生能利用描点法画出二次函数ya(xh)2的图象。 2让学生经历二次函数ya(xh)2性质探究的过程,理解函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系。重点难点:重点:会用描点法画出二次函数ya(xh)2的图象,理解二次函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系是教学的重点。难点:理解二次函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的相互关系是教学的难点。教学过程:一、提出问题1在同一直角坐标系内,画出二次函数yx2,yx21的图象,并回答: (1)两条抛物线的位置关系。 (2)分别说出它们的对称轴、开口方向和顶点坐标。 (3)说出它们所具有的公共性质。 2二次函数y2(x1)2的图象与二次函数y2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、分析问题,解决问题问题1:你将用什么方法来研究上面提出的问题? (画出二次函数y2(x1)2和二次函数y2x2的图象,并加以观察) 问题2:你能在同一直角坐标系中,画出二次函数y2x2与y2(x1)2的图象吗? 教学要点 1让学生完成下表填空。x3210123y2x2y2(x1)2 2让学生在直角坐标系中画出图来: 3教师巡视、指导。问题3:现在你能回答前面提出的问题吗?教学要点1教师引导学生观察画出的两个函数图象根据所画出的图象,完成以下填空:开口方向对称轴顶点坐标y2x2y2(x1)2 2让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y2(x1)2与y2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y2(x一1)2的图象可以看作是函数y2x2的图象向右平移1个单位得到的,它的对称轴是直线x1,顶点坐标是(1,0)。 问题4:你可以由函数y2x2的性质,得到函数y2(x1)2的性质吗? 教学要点 1.教师引导学生回顾二次函数y2x2的性质,并观察二次函数y2(x1)2的图象; 2让学生完成以下填空: 当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大;当x_时,函数取得最_值y_。三、做一做问题5:你能在同一直角坐标系中画出函数y2(x1)2与函数y2x2的图象,并比较它们的联系和区别吗? 教学要点 1在学生画函数图象的同时,教师巡视、指导; 2请两位同学上台板演,教师讲评; 3让学生发表不同的意见,归结为:函数y2(x1)2与函数y2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y2(x1)2的图象可以看作是将函数y2x2的图象向左平移1个单位得到的。它的对称轴是直线x1,顶点坐标是(1,0)。 问题6;你能由函数y2x2的性质,得到函数y2(x1)2的性质吗? 教学要点 让学生讨论、交流,举手发言,达成共识:当x1时,函数值y随x的增大而减小;当x1时,函数值y随x的增大而增大;当x一1时,函数取得最小值,最小值y0。 问题7:在同一直角坐标系中,函数y(x2)2图象与函数yx2的图象有何关系? (函数y(x2)2的图象可以看作是将函数yx2的图象向左平移2个单位得到的。) 问题8:你能说出函数y(x2)2图象的开口方向、对称轴和顶点坐标吗? (函数y(x十2)2的图象开口向下,对称轴是直线x2,顶点坐标是(2,0)。 问题9:你能得到函数y(x2)2的性质吗? 教学要点 让学生讨论、交流,发表意见,归结为:当x2时,函数值y随x的增大而增大;当x2时,函数值y随工的增大而减小;当x2时,函数取得最大值,最大值y0。四、课堂练习:P11练习1、2、3。五、小结:1在同一直角坐标系中,函数ya(xh)2的图象与函数yax2的图象有什么联系和区别? 2你能说出函数ya(xh)2图象的性质吗? 3谈谈本节课的收获和体会。六、作业 1P19习题262 1(2)。 2选用课时作业优化设计。第二课时作业优化设计 1在同一直角坐标系中,画出下列各组两个二次函数的图象。 (1)y4x2与y4(x3)2 (2)y(x1)2与y(x1)2 2已知函数yx2,y(x2)2和y(x2)2。 (1)在同一直角坐标中画出它们的函数图象; (2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)试说明,分别通过怎样的平移,可以由函数y1/4x2的图象得到函数y(x2)2和函数y(x2)2的图象? (4)分别说出各个函数的性质。 3已知函数y4x2,y4(x1)2和y4(x1)2。 (1)在同一直角坐标系中画出它们的图象; (2)分别说出各个函数图象的开口方向,对称轴、顶点坐标; (3)试说明:分别通过怎样的平移,可以由函数y4x2的图象得到函数y4(x1)2和函数y4(x1)2的图象, (4)分别说出各个函数的性质 4二次函数ya(xh)2的最大值或最小值与二次函数图象的顶点有什么关系?26.1二次函数(5) 教学目标: 1使学生理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系。2会确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标。3让学生经历函数y=a(xh)2k性质的探索过程,理解函数y=a(xh)2k的性质。重点难点:重点:确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系,理解函数y=a(xh)2k的性质是教学的重点。难点:正确理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系以及函数y=a(xh)2k的性质是教学的难点。教学过程:一、提出问题1函数y=2x21的图象与函数y=2x2的图象有什么关系? (函数y=2x21的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2函数y=2(x1)2的图象与函数y=2x2的图象有什么关系? (函数y=2(x1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图26.2.3)3函数y=2(x1)21图象与函数y=2(x1)2图象有什么关系?函数y=2(x1)21有哪些性质?二、试一试你能填写下表吗?y=2x2 向右平移的图象1个单位y=2(x1)2向上平移1个单位y=2(x1)21的图象开口方向向上对称轴y轴顶 点(0,0) 问题2:从上表中,你能分别找到函数y=2(x1)21与函数y=2(x1)2、y=2x2图象的关系吗? 问题3:你能发现函数y=2(x1)21有哪些性质? 对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识; 函数y2(x1)21的图象可以看成是将函数y=2(x1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。 当x1时,函数值y随x的增大而减小,当x1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。三、做一做问题4:在图2623中,你能再画出函数y=2(x1)22的图象,并将它与函数y=2(x1)2的图象作比较吗? 教学要点 1在学生画函数图象时,教师巡视指导; 2对“比较”两字做出解释,然后让学生进行比较。 问题5:你能说出函数y=(x1)22的图象与函数y=x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗? (函数y(x1)22的图象可以看成是将函数y=x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)四、课堂练习: P13练习1、2、3、4。 对于练习第4题,教师必须提示:将3x26x8配方,化为练习第3题中的形式,即 y=3x26x8 =3(x22x)8 =3(x22x11)8 =3(x1)211五、小结1通过本节课的学习,你学到了哪些知识?还存在什么困惑?2谈谈你的学习体会。六、作业: 1巳知函数yx2、yx21和y(x1)21(1)在同一直角坐标系中画出三个函数的图象; (2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明:分别通过怎样的平移,可以由抛物线yx2得到抛物线yx21和抛物线y(x1)21;(4)试讨论函数y(x1)21的性质。2已知函数y6x2、y6(x3)23和y6(x3)23。(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明,分别通过怎样的平移,可以由抛物线y6x2得到抛物线y6(x3)23和抛物线y6(x3)23;(4)试讨沦函数y6(x3)23的性质;3不画图象,直接说出函数y2x25x7的图象的开口方向、对称轴和顶点坐标。4函数y2(x1)2k的图象与函数y2x2的图象有什么关系?26.1二次函数(6) 教学目标: 1使学生掌握用描点法画出函数yax2bxc的图象。2使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。3让学生经历探索二次函数yax2bxc的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数yax2bxc的性质。重点难点:重点:用描点法画出二次函数yax2bxc的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。难点:理解二次函数yax2bxc(a0)的性质以及它的对称轴(顶点坐标分别是x、(,)是教学的难点。教学过程:一、提出问题 1你能说出函数y4(x2)21图象的开口方向、对称轴和顶点坐标吗? (函数y4(x2)21图象的开口向下,对称轴为直线x2,顶点坐标是(2,1)。 2函数y4(x2)21图象与函数y4x2的图象有什么关系? (函数y4(x2)21的图象可以看成是将函数y4x2的图象向右平移2个单位再向上平移1个单位得到的) 3函数y4(x2)21具有哪些性质? (当x2时,函数值y随x的增大而增大,当x2时,函数值y随x的增大而减小;当x2时,函数取得最大值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论