混杂偏倚(confounding bias)与交互作用.ppt_第1页
混杂偏倚(confounding bias)与交互作用.ppt_第2页
混杂偏倚(confounding bias)与交互作用.ppt_第3页
混杂偏倚(confounding bias)与交互作用.ppt_第4页
混杂偏倚(confounding bias)与交互作用.ppt_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

混杂偏倚 confoundingbias 与交互作用 interaction 北京大学公共卫生学院流行病学与卫生统计学系胡永华 1 偏倚 选择偏倚 selectionbias 信息偏倚 informationbias 混杂偏倚 confoundingbias 一 混杂偏倚 confoundingbias 2 2020 3 20 一 混杂偏倚的概念 指在流行病学研究中 由于一个或多个潜在的混杂因素 confoundingfactor 的影响 掩盖或夸大了研究因素与疾病 或事件 之间的联系 从而使两者之间的真正联系被错误地估计 造成混杂 confounding 3 2020 3 20 混杂因子 confoundingfactor confounder 研究的暴露因素和研究疾病之外因素 第三因子 外部因素 此外部因素与研究疾病有关 独立相关 并且与研究的暴露因素有关 统计关联 混杂 confounding 若混杂因素在比较的人群组中分布不匀 可以歪曲 掩盖或夸大 因素与疾病之间真正联系 举例研究吸烟与肺癌的关系性别是个外部变量 性别与肺癌有关 性别与吸烟暴露有关 故性别是该研究中的混杂因子 无论是队列研究还是病例对照研究 若性别在比较组中分布不均衡 研究将出现混杂 4 2020 3 20 为明确定义混杂因子 流行病学分析中排除一类外部因子 该因子是暴露导致疾病的中间环节或中间变量 如 吸烟高血压心脏病吸烟COPD肺癌高血压与COPD都不是混杂因子 因为它们为病因链中的因子 也称内部介导因子 IntermediateFactor 5 2020 3 20 混杂因子 confoundingfactor confounder 研究的暴露因素和研究疾病之外因素 第三因子 外部因素 此因素与研究疾病有关 独立相关 危险因子或保护因子 并且与研究的暴露因素有关 统计关联 该因素不是暴露导致疾病的中间环节或中间变量 6 2020 3 20 二 混杂的特点1 混杂 confounding 的本质是一种效应的混淆 外部因素对疾病的效应与暴露因素对疾病的效应交织在一起 故无法正确评价暴露因素对疾病的真实关系 2 代理混杂因子 SurrogateConfounders 与混杂因子密切相关 能够引起混杂外部变量称为代理混杂因子 如年龄 文化程度 经济状况等 7 2020 3 20 混杂因素成立与不成立的几种情况 EEEDDDFFF123EEEEDDDDFFFF4567 F 代理混杂 8 2020 3 20 三 混杂的测量若cRR aRR f 则f无混杂作用 cRR不存在f的混杂偏倚 若cRR aRR f 则f有混杂作用 cRR存在f的混杂偏倚 若cRR aRR f 正混杂 positiveconfounding 亦称阳性混杂 即由于f的混杂作用 使cRR高估了研究因素与研究疾病之间的联系 若cRR aRR f 负混杂 negativeconfounding 亦称阳性混杂 即由于f的混杂作用 使cRR低估了因素与研究疾病之间的联系 9 2020 3 20 三 混杂的测量若cRR aRR f 则f无混杂作用 cRR不存在f的混杂偏倚 若cRR aRR f 则f有混杂作用 cRR存在f的混杂偏倚 若cRR aRR f 为正混杂 positiveconfounding 亦称阳性混杂 即由于f的混杂作用 使cRR高估了研究因素与研究疾病之间的联系 若cRR aRR f 为负混杂 negativeconfounding 亦称阳性混杂 即由于f的混杂作用 使cRR低估了因素与研究疾病之间的联系 10 2020 3 20 四 混杂的大小及其方向cRR aRRcOR aOR混杂偏倚 or aRRaORcRR aRR 无混杂cRR aRR 正混杂 positiveconfounding 亦称阳性混杂cRR aRR 负混杂称阴性混杂 cRR低估了因素与研究疾病之间的联系 11 2020 3 20 五 混杂的控制 1 设计阶段限制 随机化 配比 利与弊 2 分析阶段分层 M H法 标准化 直接 间接法 多因素分析 多元回归分析 12 2020 3 20 限制 restriction 针对某个或某些可能的混杂因素 在设计时对研究对象的入选条件予以限制 随机化 randomization 使研究对象以等同的机率被分配在各处理组中 从而使潜在的混杂因素在各组间分布均衡 随机化方法常用于实验性研究 以在临床试验中最常用 随机分配方法分为简单随机分配与分层随机分配 13 2020 3 20 随机化 randomization 使研究对象以等同的机率被分配在各处理组中 从而使潜在的混杂因素在各组间分布均衡 随机化方法常用于实验性研究 以在临床试验中最常用 随机分配方法分为简单随机分配与分层随机分配 14 2020 3 20 配比 Matching 配比指的是对比较组的选择 使其针对一个或多个潜在的混杂因素与指示研究对象相同或接近 配比可在研究对象间逐个配比 此为个体配比 也可是组间的配比 此为频数配比 个体配比与频数配比无本质的不同 在队列研究中 如果设计时进行了配比 就无需在分析时控制配比因素 在病例对照研究中 若配比因素确实是一个混杂因素 将引入了一个极似混杂的选择偏倚 引入的偏倚可通过分层分析进行控制 即 配比本身未直接起到控制混杂的作用 控制混杂是靠分层分析实现的 15 2020 3 20 配比 Matching 在队列研究中 如果设计时进行了配比 就无需在分析时控制配比因素 在病例对照研究中 若配比因素确实是一个混杂因素 将引入了一个极似混杂的选择偏倚 引入的偏倚可通过分层分析进行控制 即 配比本身未直接起到控制混杂的作用 控制混杂是靠分层分析实现的 16 2020 3 20 配比过头 overmatching 至少有三种类型的配比过头 损害统计效率的配比 如对仅与暴露有关而与疾病无关的变量的配比 损害真实性的配比 如将暴露与疾病之间一个中间变量配比 例 吸烟 COPD 肺癌 损害费用效益的配比 过多的选择配对条件 使得实施复杂 17 2020 3 20 分层分析 将研究资料按照混杂因素分层若各层间研究因素与疾病之间的联系一致 可用Mantel Haenszel分层分析方法进行分析得到将该混杂因素调整后的效应估计值若各层间研究因素与疾病之间的差异较大 可采用标化的方法调整 前提 排除交互作用 18 2020 3 20 M H法 1959年Mantel和Haenszel首次提出了著名的分层分析法 stratifiedanalysis 以解决肿瘤回顾性研究中的混杂问题 M H法计算简单 而且即使在每层内的频数较少或资料偶然含有零的情况下 也能比较好的估计效应值 在一般情况下 优先选用M H法 尤其是在处理四格表资料时 19 2020 3 20 StatisticalAnalysis Mantel Haenszel M H estimatorMantel Haenszelteststatistic nimi tiNi ni mi i 1 K MantelN HaenszelWHStatisticalaspectsoftheanalysisofdatafromretrospectivestudiesofdisease J Natl CancerInst 1959 22 719 748 20 2020 3 20 队列研究 21 2020 3 20 病例对照研究 ORMH 22 2020 3 20 同时患有先天性心脏病和Down氏综合症的病孩与健康对照 母亲在受精之前杀精子剂使用情况分布 按母亲的生产年龄分层 ORMH 23 2020 3 20 粗的OR 3 50ORMH 3 78cOR aOR3 50 3 78混杂偏倚 0 07aOR3 78负混杂 混杂因子造成低估暴露因素的致病作用 控制混杂后暴露与疾病的关联强度OR值为3 78 24 2020 3 20 多因素分析方法 如果欲控制的混杂因素较多 往往受样本量的影响 分层分析常不适用 在这种情况下 可应用多因素分析方法予以控制 如多元协方差分析 多元Logistic回归分析等等 25 2020 3 20 一 背景不同学科 不同学者对交互作用的概念定义存在歧异 毒理学 药理学 生物化学 物理学 在同一学科中 如流行病学 交互的概念也常被混混淆 交互作用的概念在流行病学文献中一直有些争议 术语 交互作用 曾经被用作性质截然不同的统计学 生物学和公共卫生学概念 争议的原因主要是人们对这些概念有着不同理解 二 交互作用 interaction 26 2020 3 20 二 流行病学研究中的交互作用概念指两个或多个因素共同作用与某一事件时 其效应不同于该两个或多个因素单独作用时的和或积 称这些因子间存在交互作用 McMahon对流行病学交互作用的定义为 Whentheincidencerateofdiseaseinthepresenceoftwoormoreriskfactorsdiffersfromtheincidencerateexpectedtotheresultfromtheirindividualeffects 参考译文 当两个或更多危险因子存在时疾病的发病率不同于它们独立作用时所期望的发病率 27 2020 3 20 三 交互作用的类型三类 统计学交互作用statisticalinteraction 采用数学模型评价交互作用 虽不涉及生物学机理 但有助于探索病因 生物学交互作用biologicalinteraction 采用生物作用机制模型或抽象生物模型评价交互作用 与生物作用机制有关 公共卫生学交互作用publichealthinteraction 应用统计学模型 多用于公共卫生效果评价 或称用于评价公共卫生干预效果的统计学交互作用 28 2020 3 20 三 统计学交互作用的概念统计学交互作用与效应修正 EFFECTMODIFICATION EM 的概念是一致的 统计学交互作用 效应修正 交互因子 效应修正因子 在流行病学中一般所谈的交互作用是指统计学交互作用 交互因子 效应修正因子 指某种效应的大小依据某些第三因子的值而变化 此第三因子称为交互因子或效应修饰因子 EFFECTMODIFER EF EM不是需控制的偏倚 而是需要努力发现 描述与报告的 29 2020 3 20 四 统计学交互作用的一般理论1 统计学交互作用的评价与所选定的测量效应指标有关 率差 率比 率差效应 无交互率比效应 有交互 率差效应 有交互率比效应 无交互 30 年龄是否为交互因子 2020 3 20 31 2 统计学交互作用的评价分析模型有关 X 因素X X 1 暴露于X因素 X 0 未暴露X因素Z 因素Z Z 1 暴露于Z因素 Z 0 未暴露Z因素R 效应 R11 同时暴露X与Z时的效应 R10 暴露X与未暴露Z时的效应 R01 暴露Z与未暴露X时的效应 R00 X与Z均未暴露时的效应 2020 3 20 1 加法模型additivemodel如果测量的效应为率差 X与Z无交互作用的条件为 R11 R01 R10 R00也可写成R11 R00 R10 R00 R01 R00 如果测量的效应为率比 X与Z无交互作用的条件为 R11 R01 R10 R00 等号两边均除R00 则 R11 R00 R01 R00 R10 R00 1也可写成R11 R00 1 R10 R00 1 R01 R00 1 32 2020 3 20 2 乘法模型multiplicativemodelX与Z无交互作用的条件为 R11 R01 R10 R00等式两边均乘R01 R00 则R11 R00 R10 R00 R01 R00 3 判断交互作用必须说明测量效应类型 必须说明所选模型的类型 流行病学病因研究中 多用率比效应 多用乘法模型 公共卫生防治效果评估 多用率差效应 多用加法模型 符合模型条件表明无交互 反之 有交互 33 2020 3 20 3 识别统计学交互作用的一般方法因素之间是否统计学联系 这种联系是否为偏倚所致 分层分析 比较各层间的RR RD 如果层间RR RD差别较大 经统计学检验 则可能存在交互作用 一般多元回归多是以乘法模型为基础 对数据要求严格 对结果的解说也存在一定问题 34 2020 3 20 4 分析统计学交互作用时需注意的问题所选择的测量效应是什么 所选择的模型是什么 符合哪个模型就表明不存在相应的交互作用 不符合哪个模型就表明存在相应的交互作用 需要进行显著性检验有统计交互不意味有生物学意义 下结论要慎重 35 2020 3 20 4 混杂因子与效应修正因子的区别概念不同性质不同处理的方法不同 36 2020 3 20 概念CF 与所研究的暴露因素和疾病都有联系的外部因子 可以歪曲 掩盖或夸大 暴露因素与疾病之间真正联系 EM 与所研究的暴露因素和疾病都有联系的外部因子 它的存在使得暴露因素

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论