



全文预览已结束
VIP免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
判定说理型问题一、选择题1、(2011年杭州模拟17)一批货物总重1.28107千克,下列运输工具可将其一次性运走的是(原创)A. 一辆板车 B. 一架飞机 C. 一辆大卡车 D. 一艘万吨巨轮答案:D2.(2011年深圳二模)某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:()罪犯不在A、B、C三人之外;()C作案时总得有A作从犯;()B不会开车。在此案中能肯定的作案对象是( ) A嫌疑犯A B嫌疑犯B C嫌疑犯C D嫌疑犯A和C答案:A3、(2011年浙江杭州28模)有下列表述:一定不是负数;无理数是无限小数;平方根等于它本身的数是0或1;对角线相等且互相垂直的四边形是正方形;圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线;一个圆锥的侧面积是一个面积为4平方厘米的扇形,那么这个圆锥的母线长L和底面半径R之间的函数关系是正比例函数。其中说法正确的个数为 ( ) A. 2 B. 3 C. 4 D. 5答案:A5、(2011年北京四中模拟28)下列四个命题中真命题是 ( )()矩形的对角线平分对角;()菱形的对角线互相垂直平分;() 梯形的对角线互相垂直; ()平行四边形的对角线相等答案:B二、解答题ACDOEFB1(2011年安徽省巢湖市七中模拟)如图,点在O上,与相交于点,延长到点,使,连结(1)证明;来源:Zxxk.Com(2)试判断直线与O的位置关系,并给出证明答案:(1)证明:(1)在和中, 又, 来源:Z.xx.k.Com第1题图(2)直线与O相切 证明:连结, 所以是等腰三角形顶角的平分线 由,得 由知,直线与O相切 2. (2011杭州市模拟)如图,以AOD的三边为边,在AD的同侧作三个等边三角形AED、BOD、AOF,请回答下列问题并说明理由:(1)四边形OBEF是什么四边形?(2)当AOD满足什么条件时,四边形OBEF是菱形?是矩形?(3)当AOD满足什么条件时,以O、B、E、F为顶点的四边形不存在?来源:Zxxk.Com来源:学&科&网OAAFADAEABA(第2题图)答案:解:(1)平行四边形;(3分)(2)当OA=OD时,四边形OBEF为菱形;(2分)当AOD=1500时,四边形OBEF为矩形;(2分)(3)当AOD=600时,以O、B、E、F为顶点的四边形不存在(3分)(每小题无理由只得1分)3、(2011杭州模拟20)有下面3个结论: 存在两个不同的无理数, 它们的积是整数; 存在两个不同的无理数, 它们的差是整数; 存在两个不同的非整数的有理数, 它们的和与商都是整数. 先判断这3个结论分别是正确还是错误的, 如果正确, 请举出符合结论的两个数.答案:均正确。每个反例给2分举说明4、(赵州二中九年七班模拟)在ABC中,ACBC,ACB90,点D为AC的中点。(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90得到线段DF,连结CF,过点F作FHFC,交直线AB于点H判断FH与FC的数量关系并加以证明。(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明。AABBDECFHDCEFH图1 图2答案:解:(1)FH与FC的数量关系是: 证明:延长交于点G,由题意,知 EDFACB90,DEDFDGCB点D为AC的中点,点G为AB的中点,且DG为的中位线ACBC,DCDGDC- DE DG- DF即EC FG EDF 90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统计中级试题及答案
- 2025年官方版离婚财产分割协议书策划
- 2025年企业职工失业保险费缴纳策划协议书
- 2025年全球贸易协调协议集
- 2025年婚典豪华车队租赁协议
- 2025年标准婚姻出轨和解协议书样本
- 2025年农村住宅建筑施工合作协议
- 供应链管理中的法律风险管控
- 企业如何应对消费者权益争议
- 2025年光伏设备安装协议书
- 《三福百货营销环境PEST、SWOT研究及其营销策略研究》11000字(论文)
- 2025年中考语文专题复习:写作技巧 课件
- 护理漏执行医嘱不良事件
- 钻机安全操作规程(3篇)
- 2024年重庆市九龙坡区某中学小升初数学试卷(含答案)
- 【MOOC】运动损伤与急救-西安电子科技大学 中国大学慕课MOOC答案
- 2025年度应急预案演练计划
- 1、2024广西专业技术人员继续教育公需科目参考答案(98分)
- 医院培训课件:《医疗废物分类及管理》
- 【MOOC】结构力学(一)-西南交通大学 中国大学慕课MOOC答案
- 【MOOC】系统解剖学-山东大学 中国大学慕课MOOC答案
评论
0/150
提交评论