




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级数学竞赛例题专题-配方法 专题 25 配方法阅读与思考把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧.配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具.配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有:1、 2、 3、 4、 配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于:(1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如 能联想起配方法.(2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.例题与求解【例1】 已知实数 , , 满足 ,那么 _(“祖冲之杯”邀请赛试题)解题思路:对题设条件实施变形,设法确定x, y的值.【例2】 若实数 , , c满足 ,则代数式 的最大值是 ( ) A、27 B、18 C、15 D、12(全国初中数学联赛试题)解题思路:运用乘法公式 ,将原式变形为含常数项及完全平方式的形式.配方法的实质在于揭示式子的非负性,而非负数有以下重要性质;(1) 非负数的最小值为零;(2) 有限个非负数的和为零,则每一个非负数都为零.【例3】 已知 , 求a + b + c的值.解题思路:题设条件是一个含三个未知量的等式,三个未知量,一个等式,怎样才能确定未知量的值呢?不妨用配方法试一试.复合根式的化简,含多元的根式等式问题,常常用到配方法.【例4】 证明数列49,4489, 444889,44448889,的每一项都是一个完全平方数.解题思路: ,由此可猜想 ,只需完成从左边到右边的推导过程即可.几个有趣的结论:(1) (2) 这表明:只出现1个奇数或只出现1个偶数的完全平方数分别有无限多个.【例5】 一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼)(全国初中数学联赛试题)解题思路:通过引元,把不满意的总分用相关字母的代数式表示,解题的关键是对这个代数式进行恰当的配方,进而求出代数式的最小值.把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题条件的目的,这种解题方法叫配方法.配方法的作用在于改变代数式的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具.【例6】 已知自然数n使得 为完全平方数,求n的值.(“希望杯”邀请赛试题)解题思路:原式中n的系数为奇数,不能直接配方,可想办法化奇为偶,解决问题.能力训练1、计算 =_.(“希望杯”邀请赛试题)2、已知 ,则 . 3、 ,y为实数,且 ,则 + y的值为_.4、当 2时,化简代数式 ,得_.5、已知 ,当 =_,y=_时, 的值最小.(全国通讯赛试题)6、若 ,则MN的值 ( )A、负数 B、正数 C、非负数 D、可正可负7、计算 的值为 ( )A、1 B、 C、 D、 (全国初中数学联赛试题)8、设 , , 为实数, ,则x,y,z中至少有一个值 ( )A、大于零 B、等于零 C、不大于零 D、小于零(全国初中数学竞赛试题)9、下列代数式表示的数一定不是某个自然数的平方(其中n为自然数)的是( )A、 B、 C、 D、 E、 10、已知实数 , , c满足 ,则a + b + c的值等于 ( )A、2 B、3 C、4 D、5(河北省竞赛试题) 解“存在”、“不存在”“至少存在一个”等形式的问题时,常从整体考虑并经常用到一下重要命题:设x1,x2,x3, xn为实数.(1) 若 则x1,x2,x3, xn中至少有(或存在)一个为零;(2) 若 ,则x1,x2,x3, xn中至少有(或存在)一个大于零;(3) 若 ,则x1,x2,x3, xn中至少有(或存在)一个小于零.11、解方程组 (苏州市竞赛试题)12、能使 是完全平方数的正整数n的值为多少?(全国初中数学联赛试题)13、已知 ,且 , , 为自然数,求 , 的值.(天津市竞赛试题)13、设a为质数,b为正整数,且 ,求 , 的值.(全国初中数学联赛试题)14、某宾馆经市场调研发现,每周该宾馆入住的房间数y与房间单价x之间存在如图所示的一次函数关系.(1) 根据图象求y与x之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西安市灞桥区纺织城小学教师招聘考前自测高频考点模拟试题及答案详解(全优)
- 2025年金华市卫生健康委员会所属医院金华市第二医院招聘7人(第一批)考前自测高频考点模拟试题及完整答案详解1套
- 2025年甘肃省嘉峪关市第八中学、嘉峪关市明珠学校分校区招聘公益性岗位人员模拟试卷及一套答案详解
- 2025大唐锡林浩特电厂招聘专职消防员1人考前自测高频考点模拟试题附答案详解(典型题)
- 室内安装桥架安全协议书8篇
- 2025江苏东南大学招聘5人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025福建福州市罗源县社会救助协管员招聘1人考前自测高频考点模拟试题及1套参考答案详解
- 2025辽宁长海县银龄教师招聘6人考前自测高频考点模拟试题参考答案详解
- 2025年广东惠州市公安局惠城区分局第二批辅警招聘48人模拟试卷及1套参考答案详解
- 2025年山西焦煤集团所属煤炭子公司井下操作技能人员招聘考前自测高频考点模拟试题及答案详解(各地真题)
- 安徽省农村信用社联合社2026年校园招聘备考考试题库附答案解析
- 化工安全三级培训考试题及答案解析
- 2025加工定做合同范本
- 2025湖北宜昌市不动产交易和登记中心招聘编外聘用人员17人考试参考试题及答案解析
- 教PEP版六年级英语上册第一次月考试卷(Unit 1-2).(含答案含听力原文)
- 铁路局安全理论培训课件
- 物流配送调度管理系统设计方案
- 35kV线路工程电杆安装施工方案
- 2025年乡镇工会集体协商指导员招聘考试试题库及答案
- 2025-2026学年苏教版(2024)小学科学二年级上册教学计划及进度表
- 2025年度环评文件技术复核服务方案投标文件(技术方案)
评论
0/150
提交评论