八年级上册数学轴对称标准教案.doc_第1页
八年级上册数学轴对称标准教案.doc_第2页
八年级上册数学轴对称标准教案.doc_第3页
八年级上册数学轴对称标准教案.doc_第4页
八年级上册数学轴对称标准教案.doc_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学 科 教 案课题:1312 轴对称(二)课型:新授课 教材内容简析:在能够识别轴对称图形并找出它的对称轴的前提下,学习两个图形成轴对称性的性质,探究线段垂直平分线的性质,学生好理解。了解两个图形成轴对称性的性质,了解轴对称图形的性质。探究线段垂直平分线的性质。学生情况分析:在能够识别轴对称图形并找出它的对称轴的前提下,学习两个图形成轴对称性的性质,探究线段垂直平分线的性质,学生好理解。教学目标:知识与技能:1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。 2、探究线段垂直平分线的性质。过程与方法: 1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。 2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。情感态度和价值观:通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。教学分析:教学重点及解决措施:1、轴对称的性质。 2、线段垂直平分线的性质。教学难点及解决措施:体验轴对称的特征。教学方法:引导发现法。教学媒体:多媒体。课时规划:一课时。教学过程: 一、创设情境,引入新课 1、上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽那么大家想一想,什么样的图形是轴对称图形呢?学生回答。二、导入新课2、大家看书P59思考: 如下图,ABC和ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,线段AA、BB、CC与直线MN有什么关系?(学生思考并做小范围讨论) 根据学生的回答得出:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3、下面大家来画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系。并归纳图形轴对称的性质: 如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线。类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平线4、探究1(书P32图13.1-6)如下图木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,是L上的点,分别量一量点P1,P2,P3,到A与B的距离,你有什么发现?探究结果: 线段垂直平分线上的点与这条线段两个端点的距离相等 学生证明、教师订正。5、 我们把以上的 性质的条件和结论互换,会怎么样? 探究结论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上 小结:上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合6、例1、如图(1),DE是ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则EBC的周长为( )厘米 证明:DE是ABC中AC边的垂直平分线,E在DE上 EC=EA BC=8厘米,AB=10厘米 CABC=EB+BC+EC =EA+EB+BC =AB+BC =8+10 =18厘米 三、随堂练习 一 课本习题 P62面第1、2题 四、课时小结 这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题 五、课后作业必作题课本习题131 P65面第3、4题选作题:课本P65面第5题 六、板书设计:1312 轴对称(二) 一、轴对称图形的性质 二、 线段垂直平分线的性质 三、例1、 四、小结 七、教学反思:学 科 教 案课题:1313 轴对称(三)课型:新授课 教材内容简析:探究轴对称图形的对称轴的作法的过程,体会利用操作、归纳获得数学结论,在探索的过程中,培养学生分析、归纳的能力。掌握轴对称图形对称轴的作法。在探索的过程中,培养学生分析、归纳的能力。学生情况分析:通过探究轴对称图形的对称轴的作法的过程,体会利用操作、归纳获得数学结论,在探索的过程中,培养学生分析、归纳的能力。教学目标:知识与技能:探索作出轴对称图形的对称轴的方法。过程与方法:1、经历探究轴对称图形的对称轴的作法的过程,体会利用操作、归纳获得数学结论的过程。2、掌握轴对称图形对称轴的作法。 3、在探索的过程中,培养学生分析、归纳的能力。情感态度和价值观:通过提问、思考、归纳、探究来激发学生学习数学的兴趣,并使学生了解一些研究问题的经验和方法,开拓实践能力,培养创新精神。教学分析:教学重点及解决措施: 轴对称图形对称轴的作法。教学难点及解决措施:探索轴对称图形对称轴的作法。教学方法:引导发现法。教学媒体:多媒体。课时规划:一课时。教学过程: 一、提出问题,引入新课 前一节课,我们学习了轴对称图形的性质,线段的垂直平分线的性质,现在我们利用这一性质,来作出线段的垂直平分线作轴对称图形的对称轴。 二、导入新课 1、要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么我们必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线 例1、如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗? 已知:线段AB如图(1) 求作:线段AB的垂直平分线 作法:如图(2) 1分别以点A、B为圆心,以大于AB的长为半径作弧,两弧相交于C和D两点;2作直线CD 即直线CD就是线段AB的垂直平分线 证明:从作法可知: AC=BC,AD=BD C、D都在AB的垂直平分线上(线段垂直平分线的判定定理) CD就是线段AB的垂直平分线(两点确定一条直线) 小结我们把这种用直尺和圆规辅助作图的方法叫尺规作图法 2、例2、图中的五角星有几条对称轴?作出这些对称轴作法: 1、找出五角星的一对对应点A和A,连结AA。2、作出线段AA的垂直平分线L。 即L就是这个五角星的一条对称轴 用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴 三随堂练习 课本P64练习 1、2、3 五课时小结 本节课我们探讨了尺规作图,作出线段的垂直平分线并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连结这对对应点,作出连线的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴 六课后作业必作题 课本P65第5,6题 选作题:1、课本P66面第11题 2、画出下图甲中的各图的对称轴 七 ,板书设计 : 13123 轴对称(三) 一,例1、 二 例2 三、 尺规作图 四,、小结 七、教学反思: 学 科 教 案课题:课型:新授课 教材内容简析:学生情况分析:教学目标:知识与技能:过程与方法: 情感态度和价值观:教学分析:教学重点及解决措施: 教学难点及解决措施:教学方法:教学媒体:课时规划:教学过程:布置作业: 板书设计: 教学反思: 课题:132.1 画轴对称图形 新授课 (一)教学目标教学知识点 1通过实际操作,了解什么叫做轴对称变换 2如何作出一个图形关于一条直线的轴对称图形 (二)能力训练要求 经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用 (三)情感与价值观要求 1鼓励学生积极参与数学活动,培养学生的数学兴趣,2初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识 3在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心 教学重点1轴对称变换的定义2作出简单平面图形经过轴对称后的图形 教学难点1作出简单平面图形关于直线的轴对称图形 2用轴对称进行图案设计 教学方法: 讲练结合法 学情分析:从实践中体会轴对称变换在实际生活中的应用好学。 教学过程 一设置情境,引入新课 在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题这节课我们来作简单平面图形经过轴对称后的图形二导入新课 1、我们可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案大家看下图2、对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途 3、下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下 结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同; 新图形上的每一点,都是原图形上的某一点关于直线L的对称点; 连结任意一对对应点的线段被对称轴垂直平分我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换 成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的3 随堂练习: 1、p68面第1、2题 2、 取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用,把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边 四课时小结 本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案5 课后作业: 必作题:p71面第1题, 选作题:p72第4题六、板书设计: 132.1 画轴对称图形 1、看图 2、画图 3、 结论 4、作业 七、教学反思: 学 科 教 案课题:课型:新授课 教材内容简析:学生情况分析:教学目标:知识与技能:过程与方法: 情感态度和价值观:教学分析:教学重点及解决措施: 教学难点及解决措施:教学方法:教学媒体:课时规划:教学过程:布置作业: 板书设计: 教学反思:课题:132.2 画轴对称图形 新授课 教学目标 (一)教学知识点 1能够按要求作出简单平面图形经过轴对称后的图形 2轴对称的简单应用 (二)能力训练要求 1能够按要求作出简单平面图形经过轴对称后的图形 2培养学生运用轴对称解决实际问题的基本能力 3使学生掌握数学知识的衔接与各部分知识间的相互联系(三)情感与价值观要求 1积极参与数学学习活动,对数学有好奇心和求知欲 2在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心 教学重点: 能够按要求作出简单平面图形经过轴对称后的图形 教学难点: 应用轴对称解决实际问题 教学方法:讲练结合法 学情分析:有前一节课的知识为基础,作出简单平面图形经过轴对称后的图形,学生好接受。 教学过程 一提出问题,创设情境 上节课我们学习了轴对称变换的概念,知道了一个图形经过轴对称变换可以得到它的轴对称图形,下面同学们来仔细观察一个图案(小黑板展示) 1例 (小黑板展示):以虚线为对称轴画出图的另一半:3 学生讨论,分小组发言,教师订正二导入新课如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的因为我们来作一个点关于一条直线的对称点由已经学过的知识知道:对应点的连线被对称轴垂直平分所以,已知对称轴L和一个点A,要画出点A关于L的对应点A,可采取如下方法:(1)过点A作对称轴L的垂线,垂足为B;(2)在垂线上截取BA,使BA=AB 点A就是点A关于直线L的对应点3 例2如图(1),已知ABC和直线L,作出与ABC关于直线L对称的图形 作法:如图(2) (1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA=OA,点A就是点A关于直线L的对称点;(2)类似地,作出点B、C关于直线L的对称点B、C; (3)连结AB、BC、CA,得到ABC即为所求 归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形三随堂练习下图中,要作出图形的另一半,哪些点可以作为特殊点?并画出图形的另一半 四、课时小结: 学生小结,教师补充,五课后作业:必作题:课本P72第7题,选作题:课本P72第6题 六。板书设计: 132.2 画轴对称图形 1例 2 例 3 小结 4 作业 七,教学反思: 学 科 教 案课题:课型:新授课 教材内容简析:学生情况分析:教学目标:知识与技能:过程与方法: 情感态度和价值观:教学分析:教学重点及解决措施: 教学难点及解决措施:教学方法:教学媒体:课时规划:教学过程:布置作业: 板书设计: 教学反思:课题:1323 用坐标表示轴对称 新授课 教学目标 (一)教学知识点 1在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律 2利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y轴对称的图形 (二)能力训练要求 1在探索关于x轴,y轴对称的点的坐标的规律时,发展学生数形结合的思维意识 2在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系 (三情感价值观要求:在探索规律的过程中,提高学生的求知欲和强烈的好奇心 教学重点 1理解图形上的点的坐标的变化与图形的轴对称变换之间的关系 2在用坐标表示轴对称时发展形象思维能力和数形结合的意识教学难点:1、用坐标表示轴对称 教学方法:探索发现法学情分析:有前一节课的知识为基础,有坐标的基础知识,发展学生数形结合的思维意识探索关于x轴、y轴对称的点的坐标规律教学过程一提出问题,创设情境 1、活动1在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案 (1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化? (2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?根据活动结果,并回答: 1、关于y轴对称的点具有什么规律呢?2、关于x轴对称的点有何规律呢? 这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律 二导入新课 2、 活动2、已知点A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0) 关于x轴的对称点A(_,_)B(_,_)C(_,_)D(_,_)E(_,_) 关于y轴的对称点A(_,_)B(_,_)C(_,_)D(_,_)E(_,_) C/ . 先在坐标系中作出A点关于x轴的对称点,即过A作x轴的垂线交x轴于M点,M点的坐标为(2,0)在AM的延长线上截AM=AM,则A就是A点关于x轴的对称点,所以A在第一象限,因为AM=AM,所以A的纵坐标为3,因为AAx轴,即AAy轴,所以A的横坐标为2,即A的坐标为(2,3) 同理可求得B,C,D,E关于x轴的对称点B,C,D,E的坐标分别为B(-1,-2),C(-6,5),D(,-1),E(4,0)列表如下:已知点 A(2,-3)B(-1,2)C(-6,-5)关于x轴的对称点A(2,3)B(-1,-2) C(-6,5)续表已知点D(,1)E(4,0)关于x轴的对称点D(,-1) E(4,0) 提问:观察上表每对对称点坐标之间的关系,你发现什么规律? 答:每对对称点的横坐标相同,纵坐标互为相反数 接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标 同样,我们先作出A关于y轴的对称点A,并求出A的坐标过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截AN,使AN=AN,则A就是所求的A关于y轴的对称点A在第三象限,AAy轴,且AN=AN,所以A的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B,C,D,E的坐标分别为B(1,2),C(6,-5),D(-,1),E(-4,0)列表如下:已知点 A(2,-3)B(-1,2)C(-6,-5)关于y轴对称点A(-2,-3) B(1,2)C(6,-5)续表已知点 D(,1)E(4,0)关于y轴对称点D(,1)E(-4,0) 提问:观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?答:关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数 3、 例2(书P70) 三随堂练习(教科书P70面第1、2、3题) 四课时小结 本节课的主要内容(由学生在教师的引导下共同回忆总结): 1在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律 2利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想 五课后作业一、必作题:教科书p71面第2、3题,二、选作题p72面第5、7题 六,板书设计: 1323 用坐标表示轴对称 1、活动1 2 、活动2、 3、 例2(书P70) 4、小结 七、教学反思:学 科 教 案课题:课型:新授课 教材内容简析:学生情况分析:教学目标:知识与技能:过程与方法: 情感态度和价值观:教学分析:教学重点及解决措施: 教学难点及解决措施:教学方法:教学媒体:课时规划:教学过程:布置作业: 板书设计: 教学反思:课题:1231.1 等腰三角形(一)新授课 教学目标(一)教学知识点: 1等腰三角形的概念、 2等腰三角形的性质 3等腰三角形的概念及性质的应用 (二)能力训练要求1经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点2探索并掌握等腰三角形的性质 (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯教学重点:1等腰三角形的概念及性质2等腰三角形性质的应用 教学难点:等腰三角形三线合一的性质的理解及其应用 教学方法: 探究归纳法 学情分析:等腰三角形的概念、性质及性质的应用学生好掌握,三线合一的性质的理解及其应用要花多点时间。 教学过程一提出问题,创设情境 A、题问:在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形来研究:等腰三角形是轴对称图形吗?怎样画等腰三角形?他有什么性质? 二导入新课B、探究1、2 看书p75面:题问1、什么叫等腰三角形?有两条边相等的三角形叫做等腰三角形相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角 2等腰三角形是轴对称图形吗?请找出它的对称轴 3等腰三角形的两底角有什么关系? 4顶角的平分线所在的直线是等腰三角形的对称轴吗? 5底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢? 等腰三角形是轴对称图形它的对称轴是顶角的平分线所在的直线因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线 小结、等腰三角形的性质: 1等腰三角形的两个底角相等(简写成“等边对等角”)2等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”) 由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质同学们现在就动手来写出这些证明过程) 例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数 学生证明,教师订正 证明; AB=AC,BD=BC=AD,ABC=C=BDC AB=AC, A=ABD(等边对等角) 设A=x,则BDC=A+ABD=2x, ABC=C=BDC=2x于是在ABC中,有 A+ABC+C=x+2x+2x=180、 解得x=36 在ABC中,A=35,ABC=C=72 三随堂练习: 课本P77练习 1、2、3 四课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高 五课后作业(一)必作题:课本P81面1题(二)选作题 : 1如果ABC是轴对称图形,则它的对称轴一定是( ) A某一条边上的高; B某一条边上的中线 C平分一角和这个角对边的直线; D某一个角的平分线 2等腰三角形的一个外角是100,它的顶角的度数是( ) A80 B20 C80和20 D80或50 C活动与探究:课外培优 1、 如右图,在ABC中,过C作BAC的平分线AD的垂线,垂足为D,DEAB交AC于E求证:AE=CE 七、教学反思: 六板书设计:1231.1 等腰三角形(一) 1、探究1、2 2、性质 3、例1 4、小结 七、教学反思:学 科 教 案课题:课型:新授课 教材内容简析:学生情况分析:教学目标:知识与技能:过程与方法: 情感态度和价值观:教学分析:教学重点及解决措施: 教学难点及解决措施:教学方法:教学媒体:课时规划:教学过程:布置作业: 板书设计: 教学反思:课题:12312 等腰三角形(二) 新授课 教学目标 (一)教学知识点:探索等腰三角形的判定定理 (二)能力训练要求 探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念 (三)情感与价值观要求 通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解从而培养学生利用已有知识解决实际问题的能力 教学重点:等腰三角形的判定定理及其应用 教学难点:探索等腰三角形的判定定理 教学方法: 讲练结合法 学情分析:学习了等腰三角形的概念、性质及性质的应用后再学习探索等腰三角形的判定定理,不难 教学过程 一提出问题,创设情境 A、上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢? B、满足了什么样的条件就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题 二导入新课 C、同学们看下面的问题并讨论:(书P7778)什么样的三角形是等腰三角形呢? 分组讨论,小组发言,教师订正 小结:等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”) D、例2、求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形 这个题是文字叙述的证明题,我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形 已知:CAE是ABC的外角,1=2,ADBC(如图) 求证:AB=AC 学生先思考,再分析证明 证明:ADBC, 1=B(两直线平行,同位角相等),2=C(两直线平行,内错角相等)又1=2,B=C, AB=AC(等角对等边) E、看小黑板,同学们试着完成这个题 已知:如图,ADBC,BD平分ABC 求证:AB=AD 证明:ADBC,ADB=DBC(两直线平行,内错角相等)又BD平分ABC ABD=DBC,ABD=ADB, AB=AD(等角对等边) F、例3如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米绳子CD和CE要多长?解:选取比例尺为1:100(即为1cm代表1m) (1)作线段DE=4cm;(2)作线段DE的垂直平分线MN,与DE交于点B; (3)在MN上截取BC=2.5cm;(4)连接CD、CE,CDE就是所求的等腰三角形,量出CD的长,就可以算出要求的绳长 三随堂练习 (一)看课本P78面 例3 (二) 做 p79 面1、2、3题 四课时小结 本节课我们主要探究了等腰三角形判定定理,并对判定定理的简单应用作了一定的了解在利用定理的过程中体会定理的重要性在直观的探索和抽象的证明中发现和养成一定的逻辑推理能力 五课后作业(1) 必作题:课本P82面第5题(2) (二)选作题 :课本P83面第10题六板书设计:12312 等腰三角形(二) 1、判定定理 2、例2 3、例3 4、小结七、教学反思: 活动与探究:课外培优 探究1等腰三角形两底角的平分线相等 过程:利用等腰三角形的性质即等边对等角,全等三角形的判定及性质结果: 已知:如图,在ABC中,AB=AC,BD、CE是ABC的平分线 求证:BD=CE 探究2等腰三角形两腰上的高相等 过程:同探究1 已知:如图,在ABC中,AB=AC,BE、CF分别是ABC的高 求证:BE=CF 学 科 教 案课题:课型:新授课 教材内容简析:学生情况分析:教学目标:知识与技能:过程与方法: 情感态度和价值观:教学分析:教学重点及解决措施: 教学难点及解决措施:教学方法:教学媒体:课时规划:教学过程:布置作业: 板书设计: 教学反思: 课题:12321 等边三角形(一)新授课 教学目标 (一)教学知识点 经历探索等腰三角形成为等边三角形的条件及其推理证明过程 (二)能力训练要求 1经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维 2经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点 (三)情感与价值观要求 1积极参与数学学习活动,对数学有好奇心和求知欲 2在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心 教学重点: 等边三角形判定定理的发现与证明 教学难点:1等边三角形判定定理的发现与证明 2引导学生全面、周到地思考问题 教学方法:探索发现法 学情分析:学习了等腰三角形的概念、性质及判定定理后再学习探索等边三角形的概念、性质,不难学习。 教学过程 一提出问题,创设情境 A、前两节课研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形三条边都相等的三角形,叫等边三角形回答下面的三个问题 1把等腰三角形的性质用到等边三角形,能得到什么结论? 2一个三角形满足什么条件就是等边三角形? 3你认为有一个角等于60的等腰三角形是等边三角形吗?请证明并与同伴交流 二导入新课 B、探索等腰三角形成等边三角形的条件看书p79面,得出:1、 等边三角形的三个内角都相等,并且每一个角都等于60;2、三个角都相等的三角形是等边三角形 3、 有一个角是60的等腰三角形是等边三角形下面就请同学们来证明这个结论 已知:如图,在ABC中,A=B=C求证:ABC是等边三角形 证明:A=B,BC=AC(等角对等边)又A=C, BC=AC(等角对等边) AB=BC=AC,即ABC是等边三角形 C、例4(书P54) D、例5如图,课外兴趣小组在一次测量活动中,测得APB=60,AP=BP=200m,他们便得出一个结论:A、B之间距离不少于200m,他们的结论对吗? 分析:我们从该问题中抽象出APB,由已知条件APB=60且AP=BP,由本节课探究结论知APB为等边三角形 解:在APB中,AP=BP,APB=60, 所以PAB=PBA=(180-APB)=(180-60)=60 于是PAB=PBA=APB APB为等边三角形,AB的长是200m,由此可以得出兴趣小组的结论是正确的 三随堂练习:(一)课本P80练习 1、2(二)补充练习:如图,ABC是等边三角形,B和C的平分线相交于D,BD、CD的垂直平分线分别交BC于E、F,求证:BE=CF 证明:连结DE、DF,则BE=DE,DF=CF :ABC是等边三角形,BD平分ABC,得1=30, 2=30, DEF=60 同理DFE=60,DEF是等边三角形DE=DF, BE=CF 四课时小结 这节课,我们自主探索、思考了等腰三角形成为等边三角形的条件,并对这个结论的证明有意识地渗透分类讨论的思想方法这节课我们学的定理非常重要,在我们今后的学习中起着非常重要的作用五课后作业:(一)必作题:课本P82.第6题(二)选作题 :课本P93面第13题 (三) 活动与探究探究:如图,在等边三角形ABC的边AB、AC上分别截取AD=AEADE是等边三角形吗?试说明理由六板书设计:12321 等边三角形(一) 1、探索 2、例4 3、例5 4、补充练习 5、小结 七教学反思: 附|参考例题 1已知,如图,房屋的顶角BAC=100,过屋顶A的立柱ADBC屋椽AB=AC,求顶架上B、C、BAD、CAD的度数 2已知:如图,ABC是等边三角形,BD是中线,延长BC到E,使CE=CD 求证:DB=DE 学 科 教 案课题:课型:新授课 教材内容简析:学生情况分析:教学目标:知识与技能:过程与方法: 情感态度和价值观:教学分析:教学重点及解决措施: 教学难点及解决措施:教学方法:教学媒体:课时规划:教学过程:布置作业: 板书设计: 教学反思:课题:12322 等边三角形(二) 新授课 教学目标 (一)教学知识点: 1探索发现猜想证明直角三角形中有一个角为30的性质 2有一个角为30的直角三角形的性质的简单应用(二)能力训练要求: 1经历“探索发现猜想证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论