




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省贵阳市2014年中考数学试卷一、选择题(以下每小题均有A,B,C,D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分)1(3分)(2013贵阳)3的倒数是()A3B3CD考点:倒数分析:根据倒数的定义进行答题解答:解:设3的倒数是a,则3a=1,解得,a=故选D点评:主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数2(3分)(2013贵阳)2013年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为()A7910亿元B7.9102亿元C7.9103亿元D0.79103亿元考点:科学记数法表示较大的数分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于790有3位,所以可以确定n=31=2解答:解:790=7.9102故选B点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键3(3分)(2013贵阳)如图,将直线l1沿着AB的方向平移得到直线l2,若1=50,则2的度数是()A40B50C90D130考点:平移的性质分析:根据平移的性质得出l1l2,进而得出2的度数解答:解:将直线l1沿着AB的方向平移得到直线l2,l1l2,1=50,2的度数是50故选;B点评:此题主要考查了平移的性质以及平行线的性质,根据已知得出l1l2是解题关键4(3分)(2013贵阳)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子下面的调查数据中最值得关注的是()A方差B平均数C中位数D众数考点:统计量的选择;众数分析:儿童福利院最值得关注的应该是哪种粽子爱吃的人数最多,即众数解答:解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数故选D点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用5(3分)(2013贵阳)一个几何体的三视图如图所示,则这个几何体的位置是()ABCD考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形结合图形,使用排除法来解答解答:解:根据几何体的主视图和左视图是矩形,俯视图是三角形可以得到该几何体是三棱柱,根据俯视图三角形的方向可以判定选A,故选A点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答6(3分)(2013贵阳)某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到绿灯的概率为,那么他遇到黄灯的概率为()ABCD考点:概率的意义分析:根据在路口遇到红灯、黄灯、绿灯的概率之和是1,再根据在路口遇到红灯的概率为,遇到绿灯的概率为,即可求出他遇到黄灯的概率解答:解:经过一个十字路口,共有红、黄、绿三色交通信号灯,在路口遇到红灯、黄灯、绿灯的概率之和是1,在路口遇到红灯的概率为,遇到绿灯的概率为,遇到黄灯的概率为1=;故选:D点评:此题考查了概率的意义,用到的知识点是概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=7(3分)(2013贵阳)如图,P是的边OA上一点,点P的坐标为(12,5),则tan等于()ABCD考点:锐角三角函数的定义;坐标与图形性质分析:过P作PEx轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出tan=,代入求出即可解答:解:过P作PEx轴于E,P(12,5),PE=5,OE=12,tan=,故选C点评:本题考查了锐角三角函数的定义的应用,注意:在RtACB中,C=90,则sinB=,cosB=,tanB=8(3分)(2013贵阳)如图,M是RtABC的斜边BC上异于B、C的一定点,过M点作直线截ABC,使截得的三角形与ABC相似,这样的直线共有()A1条B2条C3条D4条考点:相似三角形的判定分析:过点D作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以解答:解:截得的三角形与ABC相似,过点M作AB的垂线,或作AC的垂线,或作BC的垂线,所得三角形满足题意过点M作直线l共有三条,故选C点评:本题主要考查三角形相似判定定理及其运用解题时,运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似9(3分)(2013贵阳)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()ABCD考点:动点问题的函数图象专题:探究型分析:先根据圆的半径为定值可知,在当点P从点A到点B的过程中OP的长度为定值,当点P从点B到点O的过程中OP逐渐缩小,从点O到点A的过程中OP逐渐增大,由此即可得出结论解答:解:圆的半径为定值,在当点P从点A到点B的过程中OP的长度为定值,当点P从点B到点O的过程中OP逐渐缩小,从点O到点A的过程中OP逐渐增大故选A点评:本题考查的是定点问题的函数图象,熟知圆的特点是解答此题的关键10(3分)(2013贵阳)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A1圈B2圈C3圈D4圈考点:切线的性质;弧长的计算分析:根据题意易证四边形OEAF是正方形,则AF=OE=1所以硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的路程是:2(AB+BC)8AF=208=12,则硬币自身滚动的圈数大约是:12硬币的周长2(圈)解答:解:如图,连接AD、AB与O的切点E、F,则OEAD,OFAB易证四边形OEAF是正方形,则AF=OE=1O的周长=21=2,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的路程是:2(AB+BC)8AF=208=12,硬币自身滚动的圈数大约是:1222(圈)故选B点评:本题考查了切线的性质、弧长的计算理清“硬币自身滚动的圈数=(矩形ABCD的周长8AF)硬币的周长”是解题的关键二、填空题(每小题4分,共20分)11(4分)(2013贵阳)方程3x+1=7的根是x=2考点:解一元一次方程专题:常规题型分析:根据一元一次方程的解法,移项、合并同类项、系数化为1即可解答:解:移项得,3x=71,合并同类项得,3x=6,系数化为1得,x=2故答案为:x=2点评:本题考查了移项、合并同类项解一元一次方程,是基础题,比较简单12(4分)(2013贵阳)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有4 个考点:利用频率估计概率分析:根据摸到白球的概率公式=40%,列出方程求解即可解答:解:不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x个,根据古典型概率公式知:P(白色小球)=40%,解得:x=4故答案为:4点评:此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=13(4分)(2013贵阳)如图,AD、AC分别是直径和弦,CAD=30,B是AC上一点,BOAD,垂足为O,BO=5cm,则CD等于5cm考点:圆周角定理;含30度角的直角三角形;勾股定理分析:在直角ACD中,依据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求得AB的长,然后利用勾股定理即可求得半径OA的长度,则直径AD即可求得,然后在直角ACD中,依据30度的锐角所对的直角边等于斜边的一半即可求解解答:解:在直角AOB中CAD=30,AB=2OB=25=10cm,AO=5cmAD=2AO=10cmAD是圆的直径,C=90,又CAD=30,CD=AD=10=5(cm)故答案是:5点评:本题考查了圆周角定理以及直角三角形的性质:30度的锐角所对的直角边等于斜边的一半,理解定理是关键14(4分)(2013贵阳)直线y=ax+b(a0)与双曲线相交于A(x1,y1),B(x2,y2)两点,则x1y1+x2y2的值为6考点:反比例函数与一次函数的交点问题分析:将A与B坐标代入反比例解析式求出x1y1与x2y2的值,即可求出所求式子的值解答:解:将A(x1,y1),B(x2,y2)两点分别代入y=中,得:x1y1=x2y2=3,则x1y1+x2y2=6故答案为:6点评:此题考查了反比例函数与一次函数的交点问题,熟练掌握反比例函数的性质是解本题的关键15(4分)(2013贵阳)已知二次函数y=x2+2mx+2,当x2时,y的值随x值的增大而增大,则实数m的取值范围是m2考点:二次函数的性质分析:根据二次函数的性质,利用二次函数的对称轴不大于2列式计算即可得解解答:解:抛物线的对称轴为直线x=m,当x2时,y的值随x值的增大而增大,m2,解得m2故答案为:m2点评:本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键三、解答题:16(6分)(2013贵阳)先化简,再求值:,其中x=1考点:分式的化简求值分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可解答:解:原式=,当x=1时,原式=2点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键17(10分)(2013贵阳)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现和为4的概率是”,她的这种看法是否正确?说明理由考点:游戏公平性;列表法与树状图法分析:(1)根据题意画树状图,再根据概率公式求出概率,即可得出答案;(2)根据概率公式求出和为4的概率,即可得出答案解答:解:(1)根据题意画树状图如下:数字相同的情况有2种,则P(小红获胜)=P(数字相同)=,P(小明获胜)=P(数字不同)=,则这个游戏公平;(2)不正确,理由如下;因为“和为4”的情况只出现了1次,所以和为4的概率为,所以她的这种看法不正确点评:此题考查了游戏的公平性,关键是根据题意画出树状图,求出每件事情发生的概率,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平18(10分)(2013贵阳)在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50(人的身高忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE(结果保留整数)考点:解直角三角形的应用-仰角俯角问题分析:(1)根据锐角三角函数关系,得出tanACB=,得出AC的长即可;(2)利用锐角三角函数关系,得出tanADE=,求出AE即可解答:解:(1)在RtABC中,ACB=30,AB=4,tanACB=,AC=4(m)答:AC的距离为4m;(2)在RtADE中,ADE=50,AD=5+4,tanADE=,AE=ADtanADE=(5+4)tan5014(m),答:塔高AE约为14m点评:此题主要考查了解直角三角形的应用,根据已知正确得出锐角三角函数关系是解题关键19(10分)(2013贵阳)贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:甲校参见汇报演出的师生人数统计表百分比人数话剧50%m演讲12%6其他n19(1)m=25,n=38%;(2)计算乙校的扇形统计图中“话剧”的圆心角度数;(3)哪个学校参加“话剧”的师生人数多?说明理由考点:扇形统计图;统计表专题:图表型分析:(1)首先求得总人数,然后在计算m和n的值即可;(2)话剧的圆心角等于其所占的百分比乘以360即可;(3)算出参加话剧的师生的人数后比较即可得到结论解答:解:(1)参加演讲的有6人,占12%,参加本次活动的共有612%=50人,m=5050%=25人,n=1950100%=38*(2)乙校的扇形统计图中“话剧”的圆心角度数为:360(160%10%)=108;(3)(15050)30%=30人,3025乙校参加“话剧”的师生人数多点评:本题考查了扇形统计图及统计表的知识,解题的关键是从统计图和统计表中整理出有关信息20(10分)(2013贵阳)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC(1)求证:AE=EC;(2)当ABC=60,CEF=60时,点F在线段BC上的什么位置?说明理由考点:菱形的性质;等边三角形的判定与性质分析:(1)连接AC,根据菱形的对角线互相垂直平分可得BD垂直平分AC,再根据线段垂直平分线上的点到线段两端点的距离相等即可得证;(2)先判定出ABC是等边三角形,根据等边三角形的每一个角都是60可得BAC=60,再根据等边对等角以及三角形的一个外角等于与它不相邻的两个内角的和求出EAC=30,从而判断出AF是ABC的角平分线,再根据等边三角形的性质可得AF是ABC的BC边上的中线,从而解得解答:(1)证明:连接AC,BD也是菱形ABCD的对角线,BD垂直平分AC,AE=EC;(2)解:点F是线段BC的中点理由如下:在菱形ABCD中,AB=BC,又ABC=60,ABC是等边三角形,BAC=60,AE=EC,CEF=60,EAC=BAC=30,AF是ABC的角平分线,AF交BC于F,AF是ABC的BC边上的中线,点F是线段BC的中点点评:本题考查了菱形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等边三角形的判定与性质,熟练掌握各图形的性质是解题的关键21(10分)(2013贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求考点:一元二次方程的应用;一元一次不等式的应用分析:(1)设2010年底至2012年底该市汽车拥有量的年平均增长率是x,根据2010年底该市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达1445万辆可列方程求解(2)设全市每年新增汽车数量为y万辆,则2013年底全市的汽车拥有量为144(1+y)90%万辆,根据要求到2013年底全市汽车拥有量不超过155.52万辆可列不等式求解解答:解:(1)设2010年底至2012年底该市汽车拥有量的年平均增长率是x,根据题意,100(1+x)2=1441+x=1.2x1=0.2=20% x2=2.2(不合题意,舍去) 答:2010年底至2012年底该市汽车拥有量的年平均增长率是20%(2)设2012年底到2013年底该市汽车拥有量的年平均增长率为y,根据题意得:144(1+y)14410%155.52解得:y0.18答:2012年底至2013年底该市汽车拥有量的年增长率要控制在不超过18%能达到要求点评:本题考查了一元二次方程的应用及不等式的应用,重点考查理解题意的能力,根据增长的结果做为等量关系列出方程求解,根据2013车的总量这个不等量关系列出不等式求解22(10分)(2013贵阳)已知:如图,AB是O的弦,O的半径为10,OE、OF分别交AB于点E、F,OF的延长线交O于点D,且AE=BF,EOF=60(1)求证:OEF是等边三角形;(2)当AE=OE时,求阴影部分的面积(结果保留根号和)考点:垂径定理;等边三角形的判定与性质;扇形面积的计算分析:(1)作OCAB于点C,由OCAB可知AC=BC,再根据AE=BF可知EC=FC,因为OCEF,所以OE=OF,再由EOF=60即可得出结论;(2)在等边OEF中,因为OEF=EOF=60,AE=OE,所以A=AOE=30,故AOF=90,再由AO=10可求出OF的长,根据S阴影=S扇形AODSAOF即可得出结论解答:(1)证明:作OCAB于点C,OCAB,AC=BC,AE=BF,EC=FC,OCEF,OE=OF,EOF=60,OEF是等边三角形;(2)解:在等边OEF中,OEF=EOF=60,AE=OE,A=AOE=30,AOF=90,AO=10,OF=,SAOF=10=,S扇形AOD=102=25,S阴影=S扇形AODSAOF=25点评:本题考查的是垂径定理,涉及到等边三角形的判定与性质、直角三角形的性质及扇形的面积等知识,难度适中23(10分)(2013贵阳)已知:直线y=ax+b过抛物线y=x22x+3的顶点P,如图所示(1)顶点P的坐标是(1,4);(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=x22x+3的交点坐标考点:二次函数的性质;一次函数图象与几何变换;待定系数法求一次函数解析式分析:(1)利用配方法求出图象的顶点坐标即可;(2)利用待定系数法求一次函数解析式即可;(3)利用关于x轴对称点的坐标性质,首先求出直线y=mx+n的解析式,进而得出直线y=mx+n与抛物线y=x22x+3的交点坐标解答:解:(1)y=x22x+3=(x 2+2x)+3=(x+1) 2+4,P点坐标为:(1,4);故答案为:(1,4);(2)将点P(1,4),A(0,11)代入y=ax+b得:,解得:,该直线的表达式为:y=7x+11;(3)直线y=mx+n与直线y=7x+11关于x轴成轴对称,y=mx+n过点P(1,4),A(0,11),解得:,y=7x11,7x11=x 22x+3,解得:x1=7,x2=2,此时y1=60,y2=3,直线y=mx+n与抛物线y=x22x+3的交点坐标为:(7,60),(2,3)点评:此题主要考查了二次函数性质以及待定系数法求一次函数解析式和函数交点坐标求法,根据已知得出图象上对应点坐标是解题关键24(12分)(2013贵阳)在ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,ABC是直角三角形;当a2+b2c2时,利用代数式a2+b2和c2的大小关系,探究ABC的形状(按角分类)(1)当ABC三边分别为6、8、9时,ABC为锐角三角形;当ABC三边分别为6、8、11时,ABC为钝角三角形(2)猜想,当a2+b2c2时,ABC为锐角三角形;当a2+b2c2时,ABC为钝角三角形(3)判断当a=2,b=4时,ABC的形状,并求出对应的c的取值范围考点:勾股定理的逆定理;勾股定理分析:(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可;(2)根据(1)中的计算作出判断即可;(3)根据三角形的任意两边之和大于第三边求出最长边c点的最大值,然后得到c的取值范围,然后分情况讨论即可得解解答:解:(1)两直角边分别为6、8时,斜边=10,ABC三边分别为6、8、9时,ABC为锐角三角形;当ABC三边分别为6、8、11时,ABC为钝角三角形;故答案为:锐角;钝角;(2)当a2+b2c2时,ABC为锐角三角形;当a2+b2c2时,ABC为钝角三角形;故答案为:;(3)c为最长边,2+4=6,4c6,a2+b2=22+42=20,a2+b2c2,即c220,0c2,当4c2时,这个三角形是锐角三角形;a2+b2=c2,即c2=20,c=2,当c=2时,这个三角形是直角三角形;a2+b2c2,即c220,c2,当2c6时,这个三角形是钝角三角形点评:本题考查了勾股定理,勾股定理逆定理,读懂题目信息,理解理解三角形为锐角三角形、直角三角形、钝角三角形时的三条边的数量关系是解题的关键25(12分)(2013贵阳)如图,在平面直角坐标系中,有一条直线l:与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移(1)在平移过程中,得到A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标(,3);(2)继续向右平移,得到A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由考点:一次函数综合题分析:(1)根据等边三角形ABC的高为3,得出A1点的纵坐标为3,再代入即可;(2)设P(x,y),连接A2P并延长交x轴于点H,连接B2P,先求出A2B2=2,HB2=,根据点P是等边三角形A2B2C2的外心,得出PH=1,将y=1代入,即可得出点P的坐标;(3)根据点P是等边三角形A2B2C2的外心,得出PA2B2,PB2C2,PA2C2是等腰三角形,得P(3,1),由(2)得,C2(4,0),点C2满足直线的关系式,得出点C2与点M重合,PMB2=30,设点Q满足的条件,QA2B2,B2QC2,A2QC2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色建筑认证体系在2025年绿色建筑行业创新与创业报告
- 基于共享经济的2025年民宿项目可持续发展可行性研究报告
- 企业通信费用管理办法
- 乡镇液化气站管理办法
- 企业标准实施管理办法
- 乳山教师管理办法细则
- 企业合同争议管理办法
- 冷链物流温控技术在冷链物流冷链物流企业冷链运输安全保障中的应用报告
- 丰都扶贫项目管理办法
- 企业宿舍职工管理办法
- 2024-2025学年广东省深圳市高一数学下学期7月期末考试(附答案)
- 泰安宏生光电科技有限公司钙钛矿零碳建筑新材料BIPV项目可行性研究报告
- 九年级化学上册(沪教版2024)新教材解读课件大纲
- DB11T 1072-2025 城市桥梁工程施工质量检验标准
- 江山南方水泥有限公司浙江省江山市大陈乡乌龙村铁锤山水泥用灰岩矿建设项目环境影响报告表
- 工程框架协议合同协议
- 电力合规管理培训
- 2025江西管理职业学院教师招聘考试试题及答案
- 中国儿童川崎病诊疗循证指南(2023年)解读
- 口腔无菌操作培训课件
- 严重过敏反应诊断和临床管理专家共识(2025)解读 2
评论
0/150
提交评论