




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲 函数的解析式与表示方法高考要求 1.由所给函数表达式正确求出函数的定义域;2.掌握求函数值域的几种常用方法;3.能根据函数所具有的某些性质或它所满足的一些关系,求出它的解析式;4.会进行函数三种表示方法的互化,培养学生思维的严密性、多样性.知识点归纳1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系.(3)图象法:就是用函数图象表示两个变量之间的关系.2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;(3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式解方程组法;(5)应用题求函数解析式常用方法有待定系数法等题型讲解 例1(1)已知,求;(2)已知,求;(3)已知是一次函数,且满足,求;(4)已知满足,求解:(1),(或)(2)令(),则,(3)设,则,(4) ,把中的换成,得 ,得,注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法例1 已知函数f(x)=的定义域是R,则实数a的取值范围是A.aB.12a0C.12a0D.a解:由a=0或可得12a0.答案:B例2 在ABC中,BC=2,AB+AC=3,中线AD的长为y,AB的长为x,建立y与x的函数关系式,并指出其定义域.解:设ADC,则ADB.根据余弦定理得12y22ycos(3x)2, 12y22ycos()x2.由整理得y.其中 解得x.函数的定义域为(,).评述:函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义的要求.例3 若函数f(x)=的值域为1,5,求实数a、c.解:由y=f(x)=,得x2yax+cy1=0.当y=0时,ax=1,a0.当y0时,xR,=a24y(cy1)0.4cy24ya20.1y5,1、5是方程4cy24ya2=0的两根.评述:求f(x)=(a12+a220)的值域时,常利用函数的定义域非空这一隐含的条件,将函数转化为方程,利用0转化为关于函数值的不等式.求解时,要注意二次项系数为字母时要讨论.例4设定义在N上的函数f(x)满足f(n)= 试求f(2002)的值.解:20022000,f(2002)=ff(200218)=ff(1984)=f1984+13=f(1997)=1997+13=2010.例5设f(x)=2x+1,已知f(m)=,求f(m).解法一:f(m)=,2m+1=. 2m=1.f(m)=+2m+1=+2m+1=+2m+1=+2m+1=+ 2m+1=(2m)+1=(1)+1=2.解法二:f(x)=2x+12x+1令,则例6某市有小灵通与全球通两种手机,小灵通手机的月租费为25元,接听电话不收费,打出电话一次在3 min以内收费0.2元,超过3 min的部分为每分钟收费0.1元,不足1 min按1 min计算(以下同).全球通手机月租费为10元,接听与打出的费用都是每分钟0.2元.若某人打出与接听次数一样多,每次接听与打出的时间在1 min以内、1到2 min以内、2到3 min以内、3到4 min以内的次数之比为4311.问,根据他的通话次数应该选择什么样的手机才能使费用最省?(注:m到m+1 min以内指含m min,而不含m+1 min)解:设小灵通每月的费用为y1元,全球通的费用为y2元,分别在1 min以内、2 min以内、3 min以内、4 min以内的通话次数为4x、3x、x、x,则y1=25+(4x+3x+x+x)0.2+0.1x=25+1.9x,y2=10+2(0.24x+0.43x+0.6x+0.8x)=10+6.8x.令y1y2,即25+1.9x10+6.8x,解得x3.06.总次数为(4+3+1+1)23.06=55.1.故当他每月的通话次数小于等于55次时,应选择全球通,大于55次时应选择小灵通.例8已知扇形的周长为10,求扇形半径r与面积S的函数关系式及此函数的定义域、值域.解:设扇形的弧长为l,则l=102r,S=lr=(5r)r=r2+5r.由得r5.S=r2+5r的定义域为(,5).又S=r2+5r=(r)2+且r=(,),当r=时,S最大=.又S52+55=0,S=r2+5r,r(,5)的值域为(0,.小结:1求函数的解析式主要有待定系数法和换元法。如果已知函数解析式的构造时,可以用待定系数法求,如函数为二次函数,可设为y=ax2+bx+c(a0)。2根据实际问题求函数表达式,是应用函数知识解决实际问题的基础,在设定或选定变量去寻求等量关系并求得函数表达式后,还要注意函数定义域常受到实际问题本身的限制。第二讲 函数的定义域、值域(最大、最小值)高考要求 掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法求函数最大、最小值问题历来是高考热点,这类问题的出现率很高,应用很广因此我们应注意总结最大、最小值问题的解题方法与技巧,以提高高考应变能力因函数的最大、最小值求出来了,值域也就知道了反之,若求出的函数的值域为非开区间,函数的最大或最小值也等于求出来了知识点归纳由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围它依赖于对各种式的认识与解不等式技能的熟练1求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;(3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知的定义域求的定义域或已知的定义域求的定义域:掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;若已知的定义域,其复合函数的定义域应由解出3求函数值域的各种方法函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域直接法:利用常见函数的值域来求一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数的定义域为R,当a0时,值域为;当a0,=,当x0时,则当时,其最小值;当a0)时或最大值(a1/3 B-12a0 C-120,求f(x2)的定义域; (2)已知函数f(2x)的定义域为1,2,求f(log2x)的定义域5已知函数f(x)的定义域为0,1,g(x)=f(x+a)+f(x-a),求函数g(x)的定义域6设f(x)=log2+log2(x-1)+log2(p-x) (1)求函数f(x)的定义域;(2)f(x)是否存在最大值或最小值?如果存在,请把它写出来;如果不存在,请说明理由7某宾馆有相同标准的床位100张根据经验,当该宾馆每张床的床价不超过10元时,床位可以全部租出;当床价高于10元时,每提高一元,将有3张床位空闲为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是为方便结算,床位应为1元的整数倍;该宾馆每日的费用支出为575元,床位出租收入必须高于支出,而且高出得越多越好,若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的支出费用后的收入),(1)把y表示为x的函数,并求出定义域;(2)试确定该宾馆床价定为多少时,既符合上述条件,又能使净收入最多?8求下列函数的值域(1)y=(1-x2)/(1+x2); (2)y=(1-2sinx)/(1+sinx) 9求下列函数的值域:(1)y=(;(2)y=;(3)y= -10已知函数f(x)=lg(x2-2mx+m+2) (1)若f(x)的定义域为R,求实数m的取值范围; (2)若f(x)的值域为R,求实数m的取值范围11若函数y=x2-3x-4的定义域为0,m,值域为-25/4,-4,则m的取值范围是 12已知f(x)的值域为3/8,4/9,试求y=f(x)+的值域13现有直径为d的圆木,要把它锯成横断面为矩形的梁,从材料力学知道,横断面为矩形的木梁强度与梁宽和梁高的平方的乘积成正比,比例系数为k问如何截法才能使梁的强度最大?14函数y=|x3|x+1|的最大值是 15已知1/2t1,则2/tt的最大值是 16函数y= x22ax(0x1)的最大值是a2,那么实数a的取值范围是 17在区间1/2,2上函数f(x)=x2+px+q与g(x)=2x+1/x2在同一点取得相同的最小值,那么f(x)在区间1/2,2上的最大值是 参考答案:1 (1,+)2 (1) (0,2)(2,3, (2) -5,-3p/2(-p/2,p/2)(3p/2,53 C注意二次项系数为零的特殊情况4 (1)ba,b-a, b|a|,a0时,x-,a0时,x-, (2)4,165当-1/2a0时,a-a1+a,x-a,1+a; 当0a1/2时,xa,1-a;当a1/2时,g(x)不存在6 (1)1x1); (2)f(x)=log2(x+1)(p-x)=log2-(x-)2 +,当(p-1)/21,即1p3时,f(x)无最值;当1(p-1)/23时,f(x)最大值为2log2(p+1)-2,无最小值7(1)=(2)当x10时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京高考零模数学试卷
- 全国北师版数学试卷
- 连云港赣榆区二模数学试卷
- 宁乡小升初数学试卷
- 职业技能提升在线培训课程设计
- 南京期初数学试卷
- 2025年度化工企业职工职业病危害防控体检服务约定书
- 2025年绿色制造企业员工健康安全管理体系合作协议
- 昌吉市2025-2026学年七年级上学期语文期中测试试卷
- 昌吉回族自治州2024-2025学年七年级下学期语文期末模拟试卷
- 配电带电作业工考试试卷与答案
- 2025年河南省机关事业单位工勤技能岗位等级考试(兽医防治员·高级技师/一级)(综合评审技能)历年参考题库含答案详解(5卷)
- 医院综合门诊部综合管理体系建设
- 2025至2030年中国SCADA行业市场运行现状及投资规划建议报告
- 医院感控知识培训
- 2025年广东高考地理试题(解析版)
- 2025年宜昌市猇亭区招聘化工园区专职工作人员(6人)笔试备考试题及答案详解(夺冠)
- 2025年山西煤矿安全生产管理人员取证考试题库(含答案)
- 1.1 网络层次化拓扑结构设计
- 厂区参观流程规范
- 国航股份新建配餐楼项目一期工程报告表
评论
0/150
提交评论