湘教版九年级数学圆全章教案.doc_第1页
湘教版九年级数学圆全章教案.doc_第2页
湘教版九年级数学圆全章教案.doc_第3页
湘教版九年级数学圆全章教案.doc_第4页
湘教版九年级数学圆全章教案.doc_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章 圆 单元要点分析 教学内容 1本单元数学的主要内容 (1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角 (2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,圆和圆的位置关系 (3)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积 2本单元在教材中的地位与作用 学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线圆的有关性质通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程 教学目标 1知识与技能 (1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理 (2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线 (3)熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算 2过程与方法 (1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动了解概念,理解等量关系,掌握定理及公式 (2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流 (3)在探索圆周角和圆心角之间的关系的过程中,让学生形成分类讨论的数学思想和归纳的数学思想 (4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力 (5)探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义 3情感、态度与价值观 经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望 教学重点 1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其运用 2在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等及其运用 3在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半及其运用 4半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径及其运用 5不在同一直线上的三个点确定一个圆 6直线L和O相交dr及其运用 7圆的切线垂直于过切点的半径及其运用 8经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题 9两圆的位置关系:d与r1和r2之间的关系:外离dr1+r2;外切d=r1+r2;相交r2-r1dr1+r2;内切d=r1-r2;内含dr;点P在圆上d=r;点P在圆内dr 点P在圆上d=r 点P在圆内dr 点P在圆上d=r点P在圆内dr点P在圆外;如果d=r点P在圆上;如果dr,如图(a)所示; 点P在圆上d=r,如图(b)所示; 点P在圆内dr,如图(c)所示 直线和圆有三种位置关系:相交、相切和相离(老师板书)如图所示: 如图(a),直线L和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线 如图(b),直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点 如图(c),直线和圆没有公共点,这时我们说这条直线和圆相离 我们知道,点到直线L的距离是这点向直线作垂线,这点到垂足D的距离,按照这个定义,作出圆心O到L的距离的三种情况? (学生分组活动):设O的半径为r,圆心到直线L的距离为d,请模仿点和圆的位置关系,总结出什么结论?老师点评直线L和O相交dr,如图(c)所示 因为d=r直线L和O相切,这里的d是圆心O到直线L的距离,即垂直,并由d=r就可得到L经过半径r的外端,即半径OA的A点,因此,很明显的,我们可以得到切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线 (学生分组讨论):根据上面的判定定理,如果你要证明一条直线是O的切线,你应该如何证明? (老师点评):应分为两步:(1)说明这个点是圆上的点,即经过半径的外端(2)过这点的半径垂直于直线 例1如图,已知RtABC的斜边AB=8cm,AC=4cm (1)以点C为圆心作圆,当半径为多长时,直线AB与C相切?为什么?(2)以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系? 分析:(1)根据切线的判定定理可知,要使直线AB与C相切,那么这条半径应垂直于直线AB,并且C点到垂足的长就是半径,所以只要求出如图所示的CD即可 (2)用d和r的关系进行判定,或借助图形进行判定 解:(1)如图24-54:过C作CDAB,垂足为D 在RtABC中 BC= CD=2 因此,当半径为2cm时,AB与C相切 理由是:直线AB为C的半径CD的外端并且CDAB,所以AB是C的切线 (2)由(1)可知,圆心C到直线AB的距离d=2cm,所以 当r=2时,dr,C与直线AB相离; 当r=4时,dr,C与直线AB相交 三、巩固练习 例2、已知:如图,AD是圆O的直径,直线BC经过点D,并且AB=AC,BAD=CAD。求证:直线BC是圆O的切线。 四、归纳小结(学生归纳,总结发言老师点评) 本节课应掌握: 1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 2应用上面的知识解决实际问题 五、布置作业 教材P73 1、2 教学后记:322 圆的切线的判定、性质和画法(2) 教学目标 1继续学习切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 2理解并掌握切线的性质定理:圆的切线垂直于过切点的半径 重难点、关键 1重点:切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目2难点与关键:切线的判定定理与切线的性质定理的灵活运用。 教学过程 一、复习引入1、点和圆有这样的位置关系及直线和圆有三种位置关系:相交、相切和相离2、切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线 根据上面的判定定理,如果你要证明一条直线是O的切线,你应该如何证明? 应分为两步:(1)说明这个点是圆上的点,经过半径外端(2)过这点的半径垂直于直线 二、探究切线的判定定理是不知道直线是切线,而判定切线,反之,如果知道这条直线是切线呢?有什么性质定理呢?实际上,如图,CD是切线,A是切点,连结AO与O于B,那么AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此,BAC=BAD=90 因此,我们有切线的性质定理: 圆的切线垂直于过切点的半径三、例题解析例3 如图,直线l是圆O的切线,切点为A,OBA=45求:AOB。 例4、经过直径两端点的切线互相平行。(见书P76)例5、过圆O上一点A画

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论