221等差数列的定义及通项公式.doc_第1页
221等差数列的定义及通项公式.doc_第2页
221等差数列的定义及通项公式.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

科目数学年级高二备课人高二数学组第 课时2.2.1 等差数列的定义及通项公式 学习目标1.掌握等差数列的定义及等差中项的含义2.掌握等差数列通项公式的推导及其应用学习重点会求具体等差数列的通项公式学习难点会求具体等差数列的通项公式学习过程:l 课前预习1、 等差数列: 一般地,如果一个数列从_起,每一项与_的差等于_,那么这个数列就叫做等差数列.这个_叫做公差,公差通常用字母_表示。2、 等差中项: 由三个数a,A,b组成的等差数列,可以看成最简单的等差数列,这时,A叫做a与b的_,即A=_.3、 等差数列的通项公式 以为首项,d为公差的等差数列的通项公式为_.4、 练习: (1)下列数是等差数列的有( ) A.2,4,6,8,10,11 B.1,1,1,1,1,1 C.1,2,3,4,5,6 D.7,5,3,1,-1,-3 (2)已知数列2,a,11成等差数列,则a=_;此公差d=_. (3)已知a+1,a,2a-1成等差数列,则a=_;公差d=_. (4)在等差数列中,=1,d=-2,则通项公式为=_;=_. (5)在等差数列中,=1,=11,则公差d=_,通项公式为=_. l 课堂探究1、 等差数列的通项公式: 已知等差数列的首项为,公差为d,求通项公式. 2、典型例题: 例1、已知数列的通项公式,试判断数列是否为等差数列,并求出公差d. 小结:判断某一数列是否为等差数列的方法:只要验证=_. 变式:已知数列的通项公式,记,求证:数列为等差数列. 例2、写出满足下列条件的等差数列的通项公式。(1),d=-2; (2),; (3),; (4)前三项分别为a+1,2a-3,2a-5. 变式:(1)等差数列的首项,公差d=3,试判断2012是否在数列中,若在,则是第几项? (2)已知等差数列满足:,求. l 总结提升: l 作业:完成本张学案 当堂检测班级_ 姓名_1、 等差数列中,d=3,则为( )A. -4 B. 4 C. 5 D. 62、 等差数列中,d=3,若,则序号n等于( )A.667 B.668 C.669 D.6703、 已知ABC的三个内角为A,B,C,且A,B,C三个角组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论