高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学案.doc_第1页
高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学案.doc_第2页
高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学案.doc_第3页
高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学案.doc_第4页
高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学案.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学案 学案2 命题及其关系、充分条件与必要条件导学目标: 1.能写出一个命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义 自主梳理 1命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题2四种命题及其关系(1)四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q(p q);逆命题:若q则p(q p);否命题:若綈p则綈q(綈p 綈q);逆否命题:若綈q则綈p(綈q 綈p)(2)四种命题间的关系(3)四种命题的真假性两个命题互为逆否命题,它们有相同的真假性两个命题为逆命题或否命题,它们的真假性没有关系3充分条件与必要条件若p q,则p叫做q的充分条件;若q p,则p叫做q的必要条件;如果p q,则p叫做q的充要条件自我检测 1(2010 湖南)下列命题中的假命题是( )A xR,lg x0 B xR,tan x1C xR,x3 0 D xR,2x 0答案 C解析 对于C选项,当x0时,030,因此 xR,x3 0是假命题2(2010 陕西)“a 0”是“|a| 0”的( )A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案 A解析 a 0 |a| 0,|a| 0 a 0,“a 0”是“|a| 0”的充分不必要条件3(2009 浙江)“x 0”是“x0”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件答案 A解析 对于“x 0” “x0”,反之不一定成立,因此“x 0”是“x0”的充分而不必要条件4若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的( )A逆否命题 B逆命题C否命题 D原命题答案 C解析 由四种命题逆否关系知,s是p的逆命题t的否命题5(2011 宜昌模拟)与命题“若aM,则b M”等价的命题是( )A若a M,则b MB若b M,则aMC若a M,则bMD若bM,则a M答案 D解析 因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可 探究点一 四种命题及其相互关系例1 写出下列命题的逆命题、否命题、逆否命题,并判断其真假(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧解题导引 给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定解 (1)逆命题:若一个数的平方是非负数,则这个数是实数真命题否命题:若一个数不是实数,则它的平方不是非负数真命题逆否命题:若一个数的平方不是非负数,则这个数不是实数真命题(2)逆命题:若两个三角形全等,则这两个三角形等底等高真命题否命题:若两个三角形不等底或不等高,则这两个三角形不全等真命题逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高假命题(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线真命题否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧真命题逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线真命题变式迁移1 有下列四个命题:“若xy0,则x,y互为相反数”的逆命题;“全等三角形的面积相等”的否命题;“若q1,则x22xq0有实根”的逆否命题;“不等边三角形的三个内角相等”的逆命题其中真命题的序号为_答案 解析 的逆命题是“若x,y互为相反数,则xy0”,真;的否命题是“不全等的三角形的面积不相等”,假;若q1,则44q0,所以x22xq0有实根,其逆否命题与原命题是等价命题,真;的逆命题是“三个内角相等的三角形是不等边三角形”,假探究点二 充要条件的判断例2 给出下列命题,试分别指出p是q的什么条件(1)p:x20;q:(x2)(x3)0.(2)p:两个三角形相似;q:两个三角形全等(3)p:m 2;q:方程x2xm0无实根(4)p:一个四边形是矩形;q:四边形的对角线相等解 (1)x20 (x2)(x3)0;而(x2)(x3)0x20.p是q的充分不必要条件(2)两个三角形相似 两个三角形全等;但两个三角形全等 两个三角形相似p是q的必要不充分条件(3)m 2 方程x2xm0无实根;方程x2xm0无实根 m 2. p是q的充分不必要条件(4)矩形的对角线相等,p q;而对角线相等的四边形不一定是矩形,q p.p是q的充分不必要条件变式迁移2 (2011 邯郸月考)下列各小题中,p是q的充要条件的是( )p:m 2或m 6;q:yx2mxm3有两个不同的零点;p:f x f x 1;q:yf(x)是偶函数;p:cos cos ;q:tan tan ;p:ABA;q: UB UA.A B C D答案 D解析 q:yx2mxm3有两个不同的零点 q:m24(m3) 0 q:m 2或m 6 p;当f(x)0时,由q p;若,k2,kZ时,显然cos cos ,但tan tan ;p:ABA p:A B q: UA UB.故符合题意探究点三 充要条件的证明例3 设a,b,c为ABC的三边,求证:方程x22axb20与x22cxb20有公共根的充要条件是A90.解题导引 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件” “结论”是证明命题的充分性,由“结论” “条件”是证明命题的必要性证明要分两个环节:一是充分性;二是必要性证明 (1)必要性:设方程x22axb20与x22cxb20有公共根x0,则x202ax0b20,x202cx0b20,两式相减可得x0b2ca,将此式代入x202ax0b20,可得b2c2a2,故A90,(2)充分性:A90,b2c2a2,b2a2c2.将代入方程x22axb20,可得x22axa2c20,即(xac)(xac)0.将代入方程x22cxb20,可得x22cxc2a20,即(xca)(xca)0.故两方程有公共根x(ac)所以方程x22axb20与x22cxb20有公共根的充要条件是A90.变式迁移3 已知ab0,求证:ab1的充要条件是a3b3aba2b20.证明 (1)必要性:ab1,ab10.a3b3aba2b2(ab)(a2abb2)(a2abb2)(ab1)(a2abb2)0.(2)充分性:a3b3aba2b20,即(ab1)(a2abb2)0.又ab0,a0且b0.a2abb2(ab2)234b2 0.ab10,即ab1.综上可知,当ab0时,ab1的充要条件是a3b3aba2b20.转化与化归思想的应用例 (12分)已知两个关于x的一元二次方程mx24x40和x24mx4m24m50,且mZ.求两方程的根都是整数的充要条件【答题模板】解 mx24x40是一元二次方程,m0. 2分另一方程为x24mx4m24m50,两方程都要有实根,116 1m 0,216m24 4m24m5 0,解得m54,1 6分两根为整数,故和与积也为整数,4mZ4mZ4m24m5Z,m为4的约数, 8分m1或1,当m1时,第一个方程x24x40的根为非整数,而当m1时,两方程均为整数根,两方程的根均为整数的充要条件是m1. 12分【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想0.求出m的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数【易错点剖析】易忽略一元二次方程这个条件隐含着m0,不易把方程的根都是整数转化为两根之和与两根之积都是整数1研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果,那么”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性2在解决充分条件、必要条件等问题时,要给出p与q是否可以相互推出的两次判断,同时还要弄清是p对q而言,还是q对p而言还要分清否命题与命题的否定的区别3本节体现了转化与化归的数学思想 (满分:75分)一、选择题(每小题5分,共25分)1(2010 天津模拟)给出以下四个命题:若ab0,则a0或b0;若a b,则am2 bm2;在ABC中,若sin Asin B,则AB;在一元二次方程ax2bxc0中,若b24ac 0,则方程有实数根其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A B C D答案 C解析 对命题,其原命题和逆否命题为真,但逆命题和否命题为假;对命题,其原命题和逆否命题为假,但逆命题和否命题为真;对命题,其原命题、逆命题、否命题、逆否命题全部为真;对命题,其原命题、逆命题、否命题、逆否命题全部为假2(2010 浙江)设0 x 2,则“xsin2x 1”是“xsin x 1”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件答案 B解析 0 x 2,0 sin x 1.xsin x 1 xsin2x 1,而xsin2x 1 xsin x 1.故选B.3(2009 北京)“62k(kZ)”是“cos 212”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件答案 A解析 由62k(kZ)可得到cos 212.由cos 212得22k3(kZ)k6(kZ)所以cos 212不一定得到62k(kZ)4(2011 威海模拟)关于命题“若抛物线yax2bxc的开口向下,则x|ax2bxc 0 ”的逆命题、否命题、逆否命题,下列结论成立的是( )A都真 B都假C否命题真 D逆否命题真答案 D解析 本题考查四种命题之间的关系及真假判断对于原命题:“若抛物线yax2bxc的开口向下,则x|ax2bxc 0 ”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若x|ax2bxc 0 ,则抛物线yax2bxc的开口向下”是一个假命题,因为当不等式ax2bxc 0的解集非空时,可以有a 0,即抛物线的开口可以向上因此否命题也是假命题5(2011 枣庄模拟)集合Ax|x|4,xR,Bx|x a,则“A B”是“a 5”的( )A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案 B解析 Ax|4x4,若A B,则a 4,a 4 a 5,但a 5 a 4.故选B.二、填空题(每小题4分,共12分)6“x1 0且x2 0”是“x1x2 0且x1x2 0”的_条件答案 充要7(2011 惠州模拟)已知p:(x1)(y2)0,q:(x1)2(y2)20,则p是q的_条件答案 必要不充分解析 由(x1)(y2)0得x1或y2,由(x1)2(y2)2 0得x1且y2,所以由q能推出p,由p推不出q, 所以填必要不充分条件8已知p(x):x22xm 0,如果p(1)是假命题,p(2)是真命题,则实数m的取值范围为_答案 3,8)解析 因为p(1)是假命题,所以12m0,解得m3;又因为p(2)是真命题,所以44m 0,解得m 8.故实数m的取值范围是3m 8.三、解答题(共38分)9(12分)(2011 许昌月考)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假(1)若q 1,则方程x22xq0有实根;(2)若ab0,则a0或b0;(3)若x2y20,则x、y全为零解 (1)逆命题:若方程x22xq0有实根,则q 1,为假命题否命题:若q1,则方程x22xq0无实根,为假命题逆否命题:若方程x22xq0无实根,则q1,为真命题(4分)(2)逆命题:若a0或b0,则ab0,为真命题否命题:若ab0,则a0且b0,为真命题逆否命题:若a0且b0,则ab0,为真命题(8分)(3)逆命题:若x、y全为零,则x2y20,为真命题否命题:若x2y20,则x、y不全为零,为真命题逆否命题:若x、y不全为零,则x2y20,为真命题(12分)10(12分)设p:实数x满足x24ax3a2 0,其中a 0;q:实数x满足x2x60,或x22x8 0,且綈p是綈q的必要不充分条件,求a的取值范围解 设Ax|px|x24ax3a2 0,a 0x|3a x a,a 0,(2分)Bx|qx|x2x60或x22x8 0x|x2x60x|x22x8 0x|2x3x|x 4或x 2x|x 4或x2(4分)綈p是綈q的必要不充分条件,綈q 綈p,且綈p 綈q.则x|綈q x|綈p,(6分)而x|綈q RBx|4x 2,x|綈p RAx|x3a或xa,a 0,x|4x 2 x|x3a或xa,a 0,(10分)则3a2,a 0或a4,a 0.(11分)综上,可得23a 0或x4.(12分)11(14分)已知数列an的前n项和Snpnq(p0,且p1),求证:数列an为等比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论