




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率论与数理统计期末考试试题一、填空题(每题3分,共15分)1、已知随机变量服从参数为2的泊松(Poisson)分布,且随机变量,则 _2、设、是随机事件,则 3、设二维随机变量的分布列为 1 2 31 2 若与相互独立,则的值分别为 。4、设 ,则 _ _ 5、设是取自总体的样本,则统计量服从_分布. 二、选择题(每题3分,共15分)1. 一盒产品中有只正品,只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) ; (B) ; (C) ; (D) .2、设事件与互不相容,且,则下面结论正确的是【 】(A) 与互不相容; (B);(C) ; (D).3、设两个相互独立的随机变量与分别服从正态分布和,则【 】 (A); (B) ; (C); (D)。4、 如果满足,则必有【 】(A)与独立;(B)与不相关;(C);(D)5、设相互独立的两个随机变量与具有同一分布律,且的分布律为0 1 则随机变量的分布律为【 】 (A); (B) ;(C) ;(D) 。三、解答题(共30分)1.(本题满分8分)两台机床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,已知第一台加工的零件比第二台加工的零件多一倍,加工出来的零件放在一起,求:任意取出的零件是合格品(A)的概率.2.(本题满分8分)将一枚硬币连掷三次,X表示三次中出现正面的次数,Y表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X,Y)的联合概率分布;(2).3.(本题满分10分)设随机变量,试求随机变量的密度函数四、(8分)设的密度函数为 求的数学期望和方差; 求与的协方差和相关系数,并讨论与是否相关?五、(本题满分8分)二维随机变量(X,Y)的概率密度为求:(1)系数A;(2)X,Y的边缘密度函数;(3)问X,Y是否独立。六、(本题满分12分) 设总体,其中是已知参数,是未知参数是从该总体中抽取的一个样本, . 求未知参数的极大似然估计量;. 判断是否为未知参数的无偏估计七、(本题满分8分)设总体,其中且与都未知,现从总体中抽取容量的样本观测值,算出,试在置信水平下,求的置信区间 (已知:,)八、(本题满分8分)某厂生产的某种产品,由以往经验知其强力标准差为7.5 kg 且 强力服从正态分布,改用新原料后,从新产品中抽取 25 件作强力试验,算得 , 问新产品的强力标准差是否有显著变化 ? ( 分别取 和 0.01, 已知 ,)概率论与数理统计期末考试试题参考答案一、填空题:1、;2、0.4;3;4、2.6;5、二、选择题:1、C;2、D;3、B;4、B;5、C三、1.解:设Bi=“取出的零件由第 i 台加工”2.解:由题意知,X的可能取值为:0,1,2,3;Y的可能取值为:1,3. 且,.于是,(1)(X,Y)的联合分布为 YX300102030(2)3.解:随机变量的密度函数为 设随机变量的分布函数为,则有 . 如果,即,则有; . 如果,则有 即所以, 即 四、解: 所以与不相关.五、(本题满分10分)解:(1)由 所以(2)X的边缘密度函数:Y的边缘密度函数:(3)因,所以X,Y是独立的六、解:. 当为未知,而为已知参数时,似然函数为 因而 所以 解得因此,的极大似然估计量为 . 因为 , 所以 ,所以 , ,所以因此, 所以,是未知参数的无偏估计七、解:由于正态总体中期望与方差都未知,所以所求置信区间为 由,得查表,得由样本观测值,得,所以, , ,因此所求置信区间为 八、解:要检验的假设为 : ; 在 时 , 故在 时 ,拒绝认为新产品的强力的标准差较原来的有显著增大 。 当 时 , 故 在 下 接 受 ,认为新产品的强力的标准差与原来的显著差异。演讲稿尊敬的老师们,同学们下午好: 我是来自10级经济学(2)班的学习委,我叫张盼盼,很荣幸有这次机会和大家一起交流担任学习委员这一职务的经验。 转眼间大学生活已经过了一年多,在这一年多的时间里,我一直担任着学习委员这一职务。回望这一年多,自己走过的路,留下的或深或浅的足迹,不仅充满了欢愉,也充满了淡淡的苦涩。一年多的工作,让我学到了很多很多,下面将自己的工作经验和大家一起分享。 学习委员是班上的一个重要职位,在我当初当上它的时候,我就在想一定不要辜负老师及同学们我的信任和支持,一定要把工作做好。要认真负责,态度踏实,要有一定的组织,领导,执行能力,并且做事情要公平,公正,公开,积极落实学校学院的具体工作。作为一名合格的学习委员,要收集学生对老师的意见和老师的教学动态。在很多情况下,老师无法和那么多学生直接打交道,很多老师也无暇顾及那么多的学生,特别是大家刚进入大学,很多人一时还不适应老师的教学模式。学习委员是老师与学生之间沟通的一个桥梁,学习委员要及时地向老师提出同学们的建议和疑问,熟悉老师对学生的基本要求。再次,学习委员在学习上要做好模范带头作用,要有优异的成绩,当同学们向我提出问题时,基本上给同学一个正确的回复。 总之,在一学年的工作之中,我懂得如何落实各项工作,如何和班委有效地分工合作,如何和同学沟通交流并且提高大家的学习积极性。当然,我的工作还存在着很多不足之处。比日:有的时候得不到同学们的响应,同学们不积极主动支持我的工作;在收集同学们对自己工作意见方面做得不够,有些事情做错了,没有周围同学的提醒,自己也没有发觉等等。最严重的一次是,我没有把英语四六级报名的时间,地点通知到位,导致我们班有4名同学错过报名的时间。这次事使我懂得了做事要脚踏实地,不能马虎。 在这次的交流会中,我希望大家可以从中吸取一些好的经验,带动本班级的学习风气,同时也相信大家在大学毕业后找到好的工作。谢谢大家!1、 填空题(每小题3分,共15分)1 设事件仅发生一个的概率为0.3,且,则至少有一个不发生的概率为_. 答案:0.3解:即 所以 .2 设随机变量服从泊松分布,且,则_.答案: 解答: 由 知 即 解得 ,故 3 设随机变量在区间上服从均匀分布,则随机变量在区间内的概率密度为_.答案: 解答:设的分布函数为的分布函数为,密度为则 因为,所以,即 故 另解 在上函数严格单调,反函数为所以4 设随机变量相互独立,且均服从参数为的指数分布,则_,=_.答案:, 解答: ,故 .5 设总体的概率密度为 .是来自的样本,则未知参数的极大似然估计量为_.答案: 解答:似然函数为 解似然方程得的极大似然估计为 .2、 单项选择题(每小题3分,共15分)1设为三个事件,且相互独立,则以下结论中不正确的是 (A)若,则与也独立. (B)若,则与也独立. (C)若,则与也独立. (D)若,则与也独立. ( )答案:(D). 解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D). 事实上由图 可见A与C不独立. 2设随机变量的分布函数为,则的值为 (A). (B). (C). (D). ( ) 答案:(A) 解答: 所以 应选(A).3设随机变量和不相关,则下列结论中正确的是 (A)与独立. (B). (C). (D). ( ) 答案:(B)解答:由不相关的等价条件知,应选(B).4设离散型随机变量和的联合概率分布为 若独立,则的值为 (A). (A). (C) (D). ( ) 答案:(A) 解答: 若独立则有 , 故应选(A).5设总体的数学期望为为来自的样本,则下列结论中 正确的是 (A)是的无偏估计量. (B)是的极大似然估计量. (C)是的相合(一致)估计量. (D)不是的估计量. ( ) 答案:(A) 解答: ,所以是的无偏估计,应选(A).3、 (7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率; (2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设任取一产品,经检验认为是合格品 任取一产品确是合格品则(1) (2) .4、 (12分) 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数, 求的分布列、分布函数、数学期望和方差. 解:的概率分布为 即 的分布函数为 .5、 (10分)设二维随机变量在区域 上服从均匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概率密度.解: (1)的概率密度为 (2)利用公式 其中 当 或时 时 故的概率密度为 的分布函数为 或利用分布函数法 6、 (10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车险核保考试题及答案
- 发展新质生产力的
- 福建新质生产力发展计划
- 新质生产力赋能出版业
- 民族英雄戚继光课件
- 民族舞蹈基本功训练课件
- 植树节活动方案(模板)
- 数字科技赋能新质生产力
- 2025年妇产科超声常见疾病诊断模拟考试答案及解析
- 科学家视角:新质生产力的创新密码
- 2025三门县国企招聘考试题目及答案
- 2025-2030红色旅游行业市场发展现状及发展前景与投资机会研究报告
- 植筋施工方案 全
- 2025四川省前期物业服务合同示范文本
- 法院舆情风险防控课件
- 动态系统仿真技术-全面剖析
- 护理人员绩效考核制度
- 人教版六年级语文上册教学计划(含进度表)
- 苏教版科学五年级上册全册教案(含反思)
- 餐饮服务与数字化运营 习题及答案 项目六
- 天津地铁设备管理制度范文
评论
0/150
提交评论