



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版八年级数学第一章1.3.蚂蚁怎样走最近甘肃省敦煌三中 王菊萍教学目标教学知识点:能运用勾股定理和勾股定理的逆定理来解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索应用勾股定理及其逆及理,解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在RtABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:、蚂蚁怎么走最近? 出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(取3) (1)同学们可将自己准备好的长方形纸片做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B 点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形,现在咱们就用剪刀沿母线AA将圆柱的侧面展开(如下图).3.老师演示多媒体动画蚂蚁走的最短路线,(小组交流讨论看看各组结果是否正确)4.课堂交流,各组同学代表发言交流,并把各组的讨论结果展示出来,5.老师分析归纳指导:我们不难发现,刚才几位同学的走法:(1)AAB; (2)ABB;(3)ADB; (4)AB.哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.、做一做:教材14页。、随堂练习1.甲、乙两位探险者,到沙漠进行探险.某日早晨800甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午1000,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,1000时甲到达B点,则AB=26=12(千米);乙到达C点,则AC=15=5(千米).在RtABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在23米之间(包含2米、3米).3.试一试(课本P15)在我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?我们可以将这个实际问题转化成数学模型.解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得(x+1)2=x2+52,x2+2x+1=x2+25解得x=12则水池的深度为12尺,芦苇长13尺.三学生随堂练习1已知圆锥的母线长为5cm,圆锥的侧面展开图如图所示,且AOA1=120,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A则蚂蚁爬行的最短路程长为()A8BC10D52(2009乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为()AB2C3D3四课时小结这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.五学生拓展分组练习1在棱长为5cm的立方体纸盒A处有一只蚂蚁,在H处有一粒蜜糖,蚂蚁想吃到蜜糖,那它沿立方体表面所走的最短路程是_cm2如图,长方体的长BE=17cm,宽AB=7cm,高BC=7cm,一只小蚂蚁从长方体表面由A点爬到D点去吃食物,则小蚂蚁走的最短路程是_cm3(A组)问题探究:(1)如图所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图中的矩形ABBA,则蚂蚁爬行的最短路程即为线段AB的长);(2)如图所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 珠宝创意线下活动策划方案
- 生物科技企业创始人股权分割与转让专项合同
- 智能家居社区商铺租赁合同及转租智慧家居服务协议
- 离婚案件中夫妻共有保险合同分割与补偿合同
- 智能化社区物业运营与管理合作协议
- 物联网产业园区数据分析与决策支持方案
- 水库泄洪能力提升改造方案
- 二手房买卖合同范本:房屋抵押贷款及还款计划协议
- 王之伦:电信服务合同中的个人信息保护法律条款
- 股权变更及税务筹划的环保企业合同
- 2025四川蜀道建筑科技有限公司招聘16人考试参考试题及答案解析
- 芯片研发流程管理办法
- 电子工程师知识培训课件
- 浙江省中考科学说理题训练及答题技巧
- 兵团连队职工考试试题及答案解析
- 假如我变成了班主任课件
- 首尔之春影视解读
- 医院病区突然停电应急处置
- 2025年移动云考试题库
- 桥隧工程培训频课件
- 幼儿园教师防恐防暴安全知识培训
评论
0/150
提交评论