高中数学之含绝对值不等式的解法.doc_第1页
高中数学之含绝对值不等式的解法.doc_第2页
高中数学之含绝对值不等式的解法.doc_第3页
高中数学之含绝对值不等式的解法.doc_第4页
高中数学之含绝对值不等式的解法.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010年普通高等学校招生全国统一考试(四川卷)数学(理工农医类)解析:四川省成都市新都一中 肖宏本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至2页,第卷3至1 0页满分150分。考试时间120分钟。考试结束后,将本试卷和答题卡一并交回.来第卷注意事项:1答第1卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号不能答在试卷上3。本试卷共1 2小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的。参考公式:如果事件A、B互斥,那么 球的表面积公式P(A+B) =P(A)+P(B) 如果事件A、B相互独立,那么 其中R表示球的半径P(AB)=P(A)P(B) 球的体积公式如果事件A在一次试验中发生的概率是p,那么 在n次独立重复试验中事件A恰好发生k次的概率 其中R表示球的半径一、 选择题:(1)i是虚数单位,计算ii2i3(A)1 (B)1 (C) (D)解析:由复数性质知:i21故ii2i3i(1)(i)1答案:A(2)下列四个图像所表示的函数,在点处连续的是(A) (B) (C) (D)解析:由图象及函数连续的性质知,D正确.w_w_w.k*s 5*u.c o*m答案:D(3)2log510log50.25w_w_w.k*s 5*u.c o*m(A)0 (B)1 (C) 2 (D)4w_w w. k#s5_u.c o*m解析:2log510log50.25log5100log50.25log5252答案:C(4)函数f(x)x2mx1的图像关于直线x1对称的充要条件是(A) (B) (C) (D)解析:函数f(x)x2mx1的对称轴为x w_w_w.k*s 5*u.c o*m 于是1 m2答案:A(5)设点M是线段BC的中点,点A在直线BC外,则(A)8 (B)4 (C) 2 (D)1w_w w. k#s5_u.c o*m解析:由16,得|BC|4 w_w_w.k*s 5*u.c o*m4而故2答案:C w_w_w.k*s 5*u.c o*m(6)将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是w_w w. k#s5_u.c o*m(A) (B) w_w_w.k*s 5*u.c o*m(C) (D)解析:将函数的图像上所有的点向右平行移动个单位长度,所得函数图象的解析式为ysin(x) w_w_w.k*s 5*u.c o*m 再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是.答案:Cy0x70488070(15,55)(7)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为w_w_w.k*s 5*u.c o*m(A)甲车间加工原料10箱,乙车间加工原料60箱(B)甲车间加工原料15箱,乙车间加工原料55箱(C)甲车间加工原料18箱,乙车间加工原料50箱(D)甲车间加工原料40箱,乙车间加工原料30箱解析:设甲车间加工原料x箱,乙车间加工原料y箱则w_w w. k#s5_u.c o*m目标函数z280x300y结合图象可得:当x15,y55时z最大本题也可以将答案逐项代入检验.答案:B w_w_w.k*s 5*u.c o*m(8)已知数列的首项,其前项的和为,且,则(A)0 (B) (C) 1 (D)2解析:由,且 w_w_w.k*s 5*u.c o*m作差得an22an1又S22S1a1,即a2a12a1a1 a22a1w_w w. k#s5_u.c o*m故an是公比为2的等比数列Sna12a122a12n1a1(2n1)a1则答案:B(9)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是w_w_w.k*s 5*u.c o*m(A) (B) (C) (D)解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,即F点到P点与A点的距离相等w_w w. k#s5_u.c o*m而|FA| w_w_w.k*s 5*u.c o*m |PF|ac,ac于是ac,ac即acc2b2acc2 w_w_w.k*s 5*u.c o*m又e(0,1)故e答案:D(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A)72 (B)96 (C) 108 (D)144 w_w_w.k*s 5*u.c o*m解析:先选一个偶数字排个位,有3种选法w_w_w.k*s 5*u.c o*m 若5在十位或十万位,则1、3有三个位置可排,324个若5排在百位、千位或万位,则1、3只有两个位置可排,共312个算上个位偶数字的排法,共计3(2412)108个答案:C(11)半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点M,N,那么M、N两点间的球面距离是(A) (B) w_w_w.k*s 5*u.c o*m(C) (D)解析:由已知,AB2R,BCR,故tanBAC w_w_w.k*s 5*u.c o*mcosBAC连结OM,则OAM为等腰三角形AM2AOcosBAC,同理AN,且MNCD w_w_w.k*s 5*u.c o*m而ACR,CDR故MN:CDAN:AC w_w_w.k*s 5*u.c o*m MN,连结OM、ON,有OMONR于是cosMON所以M、N两点间的球面距离是 w_w_w.k*s 5*u.c o*m答案:A(12)设,则的最小值是w_w w. k#s5_u.c o*m(A)2 (B)4 (C) (D)5解析: w_w_w.k*s 5*u.c o*m0224当且仅当a5c0,ab1,a(ab)1时等号成立如取a,b,c满足条件.答案:B第卷二、 填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)的展开式中的第四项是 . w_w_w.k*s 5*u.c o*m解析:T4 w_w_w.k*s 5*u.c o*m答案:(14)直线与圆相交于A、B两点,则 .解析:方法一、圆心为(0,0),半径为2圆心到直线的距离为dw_w w. k#s5_u.c o*m故 w_w_w.k*s 5*u.c o*m得|AB|2答案:2(15)如图,二面角的大小是60,线段.,与所成的角为30.则与平面所成的角的正弦值是 .解析:过点A作平面的垂线,垂足为C,在内过C作l的垂线.垂足为D连结AD,有三垂线定理可知ADl,CD故ADC为二面角的平面角,为60又由已知,ABD30连结CB,则ABC为与平面所成的角w_w_w.k*s 5*u.c o*m设AD2,则AC,CD1AB4sinABC答案:(16)设S为复数集C的非空子集.若对任意,都有,则称S为封闭集。下列命题:集合Sabi|(为整数,为虚数单位)为封闭集;w_w_w.k*s 5*u.c o*m若S为封闭集,则一定有;封闭集一定是无限集;若S为封闭集,则满足的任意集合也是封闭集. w_w w. k#s5_u.c o*m其中真命题是 (写出所有真命题的序号)解析:直接验证可知正确.当S为封闭集时,因为xyS,取xy,得0S,正确对于集合S0,显然满足素有条件,但S是有限集,错误取S0,T0,1,满足,但由于011T,故T不是封闭集,错误答案:三、 解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。()求甲中奖且乙、丙都没有中奖的概率;()求中奖人数的分布列及数学期望E.(18)(本小题满分12分)w_w w. k#s5_u.c o*m已知正方体ABCDABCD的棱长为1,点M是棱AA的中点,点O是对角线BD的中点.()求证:OM为异面直线AA和BD的公垂线;()求二面角MBCB的大小;()求三棱锥MOBC的体积.(19)(本小题满分12分)()证明两角和的余弦公式; 由推导两角和的正弦公式.()已知ABC的面积,且,求cosC.(20)(本小题满分12分)已知定点A(1,0),F(2,0),定直线l:x,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N()求E的方程;()试判断以线段MN为直径的圆是否过点F,并说明理由.(21)(本小题满分12分)已知数列an满足a10,a22,且对任意m、nN*都有a2m1a2n12amn12(mn)2()求a3,a5;()设bna2n1a2n1(nN*),证明:bn是等差数列;()设cn(an+1an)qn1(q0,nN*),求数列cn的前n项和Sn.(22)(本小题满分14分)设(且),g(x)是f(x)的反函数.()设关于的方程求在区间2,6上有实数解,求t的取值范围;()当ae(e为自然对数的底数)时,证明:;()当0a时,试比较与4的大小,并说明理由.含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。(一)、公式法:即利用与的解集求解。 主要知识:1、绝对值的几何意义:是指数轴上点到原点的距离;是指数轴上,两点间的距离.。2、与型的不等式的解法。当时,不等式的解集是不等式的解集是; 当时,不等式的解集是不等式的解集是;3与型的不等式的解法。把 看作一个整体时,可化为与型的不等式来求解。当时,不等式的解集是不等式的解集是; 当时,不等式的解集是不等式的解集是;例1 解不等式分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“”看着一个整体。答案为。(解略)(二)、定义法:即利用去掉绝对值再解。例2。解不等式。分析:由绝对值的意义知,a0,a0。解:原不等式等价于0x(x+2)0-2x0。(三)、平方法:解型不等式。例3、解不等式。解:原不等式(2x-3+x-1)(2x-3-x+1)0(3x-4)(x-2)0 。说明:求解中以平方后移项再用平方差公式分解因式为宜。二、分类讨论法:即通过合理分类去绝对值后再求解。例4 解不等式。分析:由,得和。和把实数集合分成三个区间,即,按这三个区间可去绝对值,故可按这三个区间讨论。解:当x-2时,得,解得:当-2x1时,得,解得:当时,得 解得:综上,原不等式的解集为。说明:(1)原不等式的解集应为各种情况的并集;(2)这种解法又叫“零点分区间法”,即通过令每一个绝对值为零求得零点,求解应注意边界值。三、几何法:即转化为几何知识求解。例5 对任何实数,若不等式恒成立,则实数k的取值范围为 ()(A)k3(B)k-3(C)k3(D)k-3分析:设,则原式对任意实数x恒成立的充要条件是,于是题转化为求的最小值。解:、的几何意义分别为数轴上点x到-1和2的距离-的几何意义为数轴上点x到-1与2的距离之差,如图可得其最小值为-3,故选(B)。四、典型题型1、解关于的不等式解:原不等式等价于,即 原不等式的解集为2、解关于的不等式 解:原不等式等价于3、解关于的不等式解:原不等式可化为 即 解得: 原不等式的解集为4、解关于的不等式 解: 当时,即,因,故原不等式的解集是空集。 当时,即,原不等式等价于解得: 综上,当时,原不等式解集为空集;当时,不等式解集为 5、解关于的不等式解:当时,得,无解 当,得,解得: 当时,得,解得: 综上所述,原不等式的解集为,6、解关于的不等式 (答案:) 解:五、巩固练习1、设函数 ;若,则的取值范围是 .2、已知,若关于的方程有实根,则的取值范围是 3、不等式的实数解为 4、解下列不等式 ; ; ; ; ; ()5、若不等式的解集为,则实数等于 ( ) 6、若,则的解集是( ) 且 且7、对任意实数,恒成立,则的取值范围是 ;对任意实数,恒成立,则的取值范围是 ;若关于的不等式的解集不是空集,则的取值范围是 ; 8、不等式的解集为( ) 9、解不等式:10、方程的解集为 ,不等式的解集是 ; 12、不等式的解集是( ) 11、不等式的解集是 12、 已知不等式的解集为,求的值 13、解关于的不等式:解关于的不等式;14、不等式的解集为( ). 15、 设集合,则等于 ( ) 16、不等式的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论