




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学一轮复习(八)直线与圆(圆的方程部分)一、圆的标准方程 方程表示圆心为A(a,b),半径长为r的圆.推导过程:已知圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r0)设M(x,y)为这个圆上任意一点,那么点M满足|MA|=r,再由两点间的距离公式,写出点M适合的条件,化简可得: 二、圆的一般方程1.方程表示的曲线不一定是圆,只有当时,它表示的曲线才是圆,我们把形如的表示圆的方程称为圆的一般方程.2. 对于方程 :(1)当D2E2-4F0时,方程表示(1)当时,表示以(-,-)为圆心,为半径的圆;(2)当时,方程只有实数解,即只表示一个点(-,-);(3)当时,方程没有实数解,因而它不表示任何图形3.圆的一般方程的特点:(1)x2和y2的系数相同,不等于0没有xy这样的二次项(2)圆的一般方程中有三个特定的系数D,E,F,因之只要求出这三个系数,圆的方程就确定了例1:(1)判断二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径. (2)若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a的值为 例2求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。三、点与圆的位置关系1.判断方法:点到圆心的距离与半径的大小关系点在圆内;点在圆上;点在圆外即(1)点在圆上等价于; (2)点在圆内部等价于; (3)点在圆外部等价于2.涉及最值:(1)圆外一点,圆上一动点,讨论的最值 (2)圆内一点,圆上一动点,讨论的最值 例3设点P(2,-3)和圆(x+4)2+(y-5)2=9上各点距离为d,则d的最大值为_,最小值为 四、直线与圆的位置关系直线与圆有三种位置关系:(为圆心到直线的距离)(1)相交,有一两个公共点 相交有两个公共点(2)相切,只有一个公共点 相切只有一个公共点(3)相离,没有公共点 相离没有公共点常见题型:求过定点的切线方程直线与圆相切,则圆心到直线的距离恰好等于半径切线条数:点在圆外:两条;点在圆上:一条;点在圆内:无1.点在圆外:如定点,圆:,第一步:设切线方程 第二步:通过,从而得到切线方程特别注意:以上解题步骤仅对存在有效,当不存在时,应补上千万不要漏了!2.点在圆上:(1)若点在圆上,则切线方程为(2)若点在圆上,则切线方程为求切线长:利用基本图形,求切点坐标:利用两个关系列出两个方程3. 直线与圆相交(1)求弦长及弦长的应用问题应用垂径定理及勾股定理来进行解答弦长公式:例4直线3x-4y+1=0被圆(x-3)2+y2=9截得的弦长为 例5若直线ax+y=1与圆(x-)2+(y-2)2=1 有两个不同交点,则a的取值范围是 例6直线(x+1)a+b(y+1)=0与圆x2+y2=2的位置关系是 例7若经过点的直线与圆相切,求此直线在y轴上的截距. 例8过点向圆引切线,求切线方程.五、对称问题1.圆本身关于直线对称,则直线过圆心。2.圆关于直线对称的方程转化为圆心关于直线对称,半径不变。例9若圆,关于直线对称,则实数的值 例10已知圆C与圆关于直线对称,则圆C的方程为 例11圆关于点对称的曲线方程是_.六、圆与圆的位置关系1.判断方法:几何法(为圆心距)(1)外离 (2)外切(3)相交 (4)内切(5)内含2.两圆公共弦所在直线方程圆:,圆:,则为两相交圆公共弦方程.补充说明:若与相切,则表示其中一条公切线方程;若与相离,则表示连心线的中垂线方程.3圆系问题(1)过两圆:和:交点的圆系方程为()说明:1)上述圆系不包括;2)当时,表示过两圆交点的直线方程(公共弦)(2)过直线与圆交点的圆系方程为(3)两圆公切线的条数问题相内切时,有一条公切线;相外切时,有三条公切线;相交时,有两条公切线;相离时,有四条公切线例11若圆C1: x2+y2-2mx+m2=4和圆C2: x2+y2+2x-4my=8-4m2相交,则m的取值范围是 例12两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的公切线有且仅有 条例13求以圆C1x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程 七、轨迹方程的求法(1)定义法(圆的定义):略(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式轨迹方程.例14已知M (-1,0), N (3,0), 则以MN为斜边的直角三角形直角顶点P的轨迹方程 练习题5.7.8.9.10.11.2、 填空题12.13.14.15.16.17.18.19.3、 解答题20.21.22.23.24.高考数学一轮复习(八)直线与圆(直线与方程部分)一、倾斜角与斜率(1)直线的倾斜角关于倾斜角的概念要抓住三点:1、与x轴相交;2、x轴正向;3、直线向上方向。直线与轴平行或重合时,规定它的倾斜角为倾斜角的范围(2)直线的斜率直线的斜率就是直线倾斜角的正切值,而倾斜角为的直线斜率不存在.记作 当直线与轴平行或重合时, , 当直线与轴垂直时, ,不存在.经过两点的直线的斜率公式是每条直线都有倾斜角,但并不是每条直线都有斜率.(3)求斜率的一般方法:已知直线上两点,根据斜率公式求斜率;已知直线的倾斜角或的某种三角函数根据来求斜率;(4)利用斜率证明三点共线的方法:已知,若,则有A、B、C三点共线。二、直线平行与垂直(1)两条直线平行:对于两条不重合的直线,其斜率分别为,则有特别地,当直线的斜率都不存在时,的关系为平行(2)两条直线垂直:如果两条直线斜率存在,设为,则有注:两条直线垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。如果中有一条直线的斜率不存在,另一条直线的斜率为0时,互相垂直.三、直线的方程(1) 直线方程的几种形式名称方程的形式已知条件局限性点斜式为直线上一定点,为斜率不包括垂直于轴的直线斜截式为斜率,是直线在轴上的截距不包括垂直于轴的直线两点式不包括垂直于轴和轴的直线 截距式是直线在轴上的非零截距,是直线在轴上的非零截距不包括垂直于轴和轴或过原点的直线一般式无限制,可表示任何位置的直线问题:过两点的直线是否一定可用两点式方程表示? 【不一定】(1)若,直线垂直于轴,方程为;(2)若,直线垂直于轴,方程为;(3)若,直线方程可用两点式表示直线的点斜式方程实际上就是我们熟知的一次函数的解析式;利用斜截式求直线方程时,需要先判断斜率存在与否.用截距式方程表示直线时,要注意以下几点:方程的条件限制为,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线;用截距式方程最便于作图,要注意截距是坐标而不是长度.截距与距离的区别:截距的值有正、负、零。距离的值是非负数。截距是实数,不是“距离”,可正可负。截距式方程的应用与坐标轴围成的三角形的周长为: |a|+|b|+;直线与坐标轴围成的三角形面积为: S= ;直线在两坐标轴上的截距相等,则或直线过原点,常设此方程为(2)线段的中点坐标公式【知识点四 直线的交点坐标与距离】(1)两条直线的交点设两条直线的方程是, 两条直线的交点坐标就是方程组的解。若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行.(2)几种距离两点间的距离:平面上的两点间的距离公式特别地,原点与任一点的距离点到直线的距离:点到直线的距离两条平行线间的距离:两条平行线间的距离注:1求点到直线的距离时,直线方程要化为一般式;2求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算。需要更多的高考数学复习资料请在淘.宝.上.搜.索.宝.贝.: 高考复习资料 高中数学 知识点总结 例题精讲(详细解答) 或者搜.店.铺.: 龙奇迹【学习资料网】精讲精练【例】已知,直线过原点O且与线段AB有公共点,则直线的斜率的取值范围是()A B C D 答案:B分析:由于直线与线段AB有公共点,故直线的斜率应介于OA,OB斜率之间解:由题意,由于直线与线段AB有公共点,所以直线的斜率的取值范围是考点:本题主要考查直线的斜率公式,考查直线与线段AB有公共点,应注意结合图象理解【例】在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有() A 1条 B 2条 C 3条 D 4条答案:B分析:由题意,A、B到直线距离是1和2,则以A、B为圆心,以1、2为半径作圆,两圆的公切线的条数即可解:分别以A、B为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求考点:本题考查点到直线的距离公式,考查转化思想【例】将直线l1:y=2x绕原点逆时针旋转60得直线l2,则直线l2到直线l3:x+2y3=0的角为() A 30 B 60 C 120 D 150答案:A分析:结合图象,由题意知直线l1l3互相垂直,不难推出l2到直线l3:x+2y3=0的角解:记直线l1的斜率为k1,直线l3的斜率为k3,注意到k1k3=1,l1l3,依题意画出示意图,结合图形分析可知,直线l2到直线l3的角是30需要更多的高考数学复习资料请在淘.宝.上.搜.索.宝.贝.: 高考复习资料 高中数学 知识点总结 例题精讲(详细解答) 或者搜.店.铺.: 龙奇迹【学习资料网】考点:本题考查直线与直线所成的角,涉及到角公式【例】方程所表示的图形的面积为_。答案: 解:方程所表示的图形是一个正方形,其边长为【例】设,则直线恒过定点 答案: 解:变化为 对于任何都成立,则【例】一直线过点,并且在两坐标轴上截距之和为,这条直线方程是_答案:,或解:设【例】已知A(1,2),B(3,4),直线l1:x=0,l2:y=0和l3:x+3y1=0、设Pi是li(i=1,2,3)上与A、B两点距离平方和最小的点,则P1P2P3的面积是_答案:分析:设出P1,P2,P3,求出P1到A,B两点的距离和最小时,P1坐标,求出P2,P3的坐标,然后再解三角形的面积即可解:设P1(0,b),P2(a,0),P3(x0,y0) 由题设点P1到A,B两点的距离和为显然当b=3即P1(0,3)时,点P1到A,B两点的距离和最小,同理P2(2,0),P3(1,0),所以考点:本题考查得到直线的距离公式,函数的最值,考查函数与方程的思想,是中档题【例】已知直线(a2)y=(3a1)x1,为使这条直线不经过第二象限,则实数a的范围是_ _答案:2,+)分析:由已知中直线(a2)y=(3a1)x1不经过第二象限,我们分别讨论a2=0(斜率不存在),a20(斜率存在)两种情况,讨论满足条件的实数a的取值,进而综合讨论结果,得到答案解:若a2=0,即a=2时,直线方程可化为x=,此时直线不经过第二象限,满足条件;若a20,直线方程可化为y=x,此时若直线不经过第二象限,则0,0,解得a0综上满足条件的实数a的范围是2,+)考点:本题考查的知识点是确定直线位置的几何要素,其中根据直线的斜截式方程中,当k0且b0时,直线不过第二象限得到关于a的不等式组,是解答本题的关键,但解答时,易忽略对a2=0(斜率不存在)时的讨论,而错解为(2,+)。【例】过点作一直线,使它与两坐标轴相交且与两轴所围成的三角形面积为。解:设直线为交轴于点,交轴于点, 得,或解得或 ,或为所求。【例】直线和轴,轴分别交于点,在线段为边在第一象限内作等边,如果在第一象限内有一点使得和的面积相等,求的值。解:由已知可得直线,设的方程为 则,过 得【例】已知点,点在直线上,求取得最小值时点的坐标。解:设,则当时,取得最小值,即【例】求函数的最小值。解:可看作点到点和点的距离之和,作点关于轴对称的点【例】在ABC中,已知BC边上的高所在直线的方程为x2y+1=0, A的平分线所在直线的方程为y=0若点B的坐标为(1,2),求点C的坐标分析:根据三角形的性质解A点,再解出AC的方程,进而求出BC方程,解出C点坐标逐步解答解:点A为y=0与x2y+1=0两直线的交点, 点A的坐标为(1,0) kAB=1又A的平分线所在直线的方程是y=0, kAC=1 直线AC的方程是y=x1而BC与x2y+1=0垂直, kBC=2 直线BC的方程是y2=2(x1)由y=x1,y=2x+4, 解得C(5,6)考点:直线的点斜式方程。本题可以借助图形帮助理解题意,将条件逐一转化求解【例】直线l过点P(2,1),且分别与x ,y轴的正半轴于A,B两点,O为原点(1)求AOB面积最小值时l的方程; (2)|PA|PB|取最小值时l的方程分析:(1)设AB方程为,点P(2,1)代入后应用基本不等式求出ab的最小值,即得三角形OAB面积面积的最小值(2)设直线l的点斜式方程,求出A,B两点的坐标,代入|PA|PB|的解析式,使用基本不等式,求出最小值,注意检验等号成立条件解:(1)设A(a,0)、B(0,b ),a0,b0,AB方程为,点P(2,1)代入得2,ab8 (当且仅当a=4,b=2时,等号成立),故三角形OAB面积S=ab4,此时直线方程为:,即x+2y4=0(2)设直线l:y1=k(x2),分别令y=0,x=0,得A(2,0),B(0,12k)则|PA|PB|=4,当且仅当k2=1,即k=1时,|PA|PB|取最小值,又 k0, k=1,这时l的方程为x+y3=0考点:本题考查直线在坐标轴上的截距的定义,直线的截距式方程,以及基本不等式的应用【例】求倾斜角是直线yx1的倾斜角的,且分别满足下列条件的直线方程:(1)经过点(,1);(2)在y轴上的截距是5.解:直线的方程为yx1,k,倾斜角120,由题知所求直线的倾斜角为30,即斜率为.(1)直线经过点(,1),所求直线方程为y1(x),即x3y60.(2)直线在y轴上的截距为5,由斜截式知所求直线方程为yx5,即x3y150.需要更多的高考数学复习资料请在淘.宝.上.搜.索.宝.贝.: 高考复习资料 高中数学 知识点总结 例题精讲(详细解答) 或者搜.店.铺.: 龙奇迹【学习资料网】【例】已知直线l:kxy12k0(1)证明:直线l过定点;(2)若直线l交x负半轴于A,交y正半轴于B,AOB的面积为S,试求S的最小值并求出此时直线l的方程。解:(1) 证明:由已知得k(x2)(1y)0, 无论k取何值,直线过定点(2,1)。(2) 令y0得A点坐标为(2,0),令x0得B点坐标为(0,2k1)(k0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高压电工考试题库:2025年高压试验技术操作典型题库
- 2025年大学国内安全保卫专业题库- 安全保卫专业学生的专业素质要求分析
- 2025年大学人文教育专业题库- 大学人文教育对学生的影响
- 2025年大学劳动教育专业题库- 劳动教育在大学生综合能力培养中的应用
- 2025年消防员职业技能考试:消防安全隐患识别与排除试题型
- 2025年大学劳动教育专业题库- 劳动教育与学生创新能力培养
- 2025年大学体育教育专业题库- 体育教学的理论研究与实践应用
- 2025年床边护理技能实操综合考核测试题答案及解析
- 2025年监理工程师职业能力测试卷:建筑工程施工监理进度控制标准试题
- 2025年大学武术与民族传统体育专业题库- 大学武术比赛的技战术与表演技能
- 【高二 拓展阅读-科技】Wind Energy
- 新版出口报关单模板
- 员工工资条模板
- 新教科版科学六年级上册知识点
- 初中历史小论文现状分析与写作探讨
- 新疆地方史课件
- 一粒种子旅行
- GB/T 9124-2010钢制管法兰技术条件
- GB 4287-1992纺织染整工业水污染物排放标准
- 腰椎间盘突出症课件
- 桂阳县中小幼教师资格定期注册工作指南专家讲座
评论
0/150
提交评论