寒假作业十 排列组合、二项式定理2012年高考试题汇编.doc_第1页
寒假作业十 排列组合、二项式定理2012年高考试题汇编.doc_第2页
寒假作业十 排列组合、二项式定理2012年高考试题汇编.doc_第3页
寒假作业十 排列组合、二项式定理2012年高考试题汇编.doc_第4页
寒假作业十 排列组合、二项式定理2012年高考试题汇编.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题十 排列组合、二项式定理 一、解答题:1【2012高考真题天津理5】在的二项展开式中,的系数为 2【2012高考真题湖南理13】( )6的二项展开式中的常数项为 (用数字作答).3【2012高考真题全国卷理15】若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_4【2012高考真题安徽理7】的展开式的常数项是 5【2012高考真题浙江理14】若将函数表示为, 其中,为实数,则_6【2012高考真题湖北理5】设,且,若能被13整除,则 7【2012高考真题浙江理6】若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 种8【2012高考真题新课标理2】将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有 种9【2012高考真题四川理11】方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 条10【2012高考真题陕西理8】两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 种11【2012高考真题山东理11】现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 12【2012高考真题辽宁理5】一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 13【2012高考真题北京理6】从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为 14【2012高考真题安徽理10】6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到份纪念品的同学人数为 15【2012高考真题全国卷理11】将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 种16【2012高考真题重庆理15】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答)二、解答题:17【2012高考真题广东理17】某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:40,5050,6060,7070,8080,9090,100(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求得数学期望18【2012高考真题天津理16】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.()求这4个人中恰有2人去参加甲游戏的概率;()求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.19【2012高考江苏25】设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时, (1)求概率; (2)求的分布列,并求其数学期望专题十 排列组合、二项式定理 一、解答题:1【2012高考真题天津理5】在的二项展开式中,的系数为40 【解析】二项展开式的通项为,令,解得,所以,所以的系数为,选D.2【2012高考真题湖南理13】( )6的二项展开式中的常数项为 (用数字作答)【答案】-160【解析】( -)6的展开式项公式是.由题意知,所以二项展开式中的常数项为.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法.3【2012高考真题全国卷理15】若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_【答案】【解析】因为展开式中的第3项和第7项的二项式系数相同,即,所以,所以展开式的通项为,令,解得,所以,所以的系数为.4【2012高考真题安徽理7】的展开式的常数项是3 【解析】第一个因式取,第二个因式取 得:,第一个因式取,第二个因式取得: 展开式的常数项是5【2012高考真题浙江理14】若将函数表示为, 其中,为实数,则_ 【答案】10【解析】法一:由等式两边对应项系数相等即:法二:对等式:两边连续对x求导三次得:,再运用赋值法,令得:,即6【2012高考真题湖北理5】设,且,若能被13整除,则12 【解析】由于51=52-1,,又由于13|52,所以只需13|1+a,0a13,所以a=127【2012高考真题浙江理6】若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有66种【解析】从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数的取法分为三类;第一类是取四个偶数,即种方法;第一类是取两个奇数,两个偶数,即种方法;第三类是取四个奇数,即故有5+60+1=66种方法8【2012高考真题新课标理2】将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有种【解析】先安排老师有种方法,在安排学生有,所以共有12种安排方案9【2012高考真题四川理11】方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有62 条【解析】本题可用排除法,6选3全排列为120,这些方程所表示的曲线要是抛物线,则且,,要减去,又和时,方程出现重复,用分步计数原理可计算重复次数为,所以不同的抛物线共有120-40-18=62条.故选B.10【2012高考真题陕西理8】两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有15种【解析】首先分类计算假如甲赢,比分3:0是1种情况;比分3:1共有3种情况,分别是前3局中(因为第四局肯定要赢),第一或第二或第三局输,其余局数获胜;比分是3:2共有6种情况,就是说前4局2:2,最后一局获胜,前4局中,用排列方法,从4局中选2局获胜,有6种情况.甲一共就1+3+6=10种情况获胜.所以加上乙获胜情况,共有10+10=20种情况.故选C.11【2012高考真题山东理11】现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为472【解析】若没有红色卡,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有种,若2色相同,则有;若红色卡片有1张,则剩余2张若不同色,有种,如同色则有,所以共有,故选C12【2012高考真题辽宁理5】一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (3!)4【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有种排法,三个家庭共有种排法;再把三个家庭进行全排列有种排法。因此不同的坐法种数为13【2012高考真题北京理6】从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为18【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。14【2012高考真题安徽理10】6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到份纪念品的同学人数为或【解析】设仅有甲与乙,丙没交换纪念品,则收到份纪念品的同学人数为人,设仅有甲与乙,丙与丁没交换纪念品,则收到份纪念品的同学人数为人15【2012高考真题全国卷理11】将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有12 种【解析】第一步先排第一列有,在排第二列,当第一列确定时,第二列有两种方法,如图,所以共有种16【2012高考真题重庆理15】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答) 【答案】【解析】6节课共有种排法.语文、数学、外语三门文化课中间隔1节艺术课有种排法,三门文化课中、都相邻有种排法,三门文化课中有两门相邻有,故所有的排法有,所以相邻两节文化课之间最多间隔1节艺术课的概率为二、解答题:17【2012高考真题广东理17】某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:40,5050,6060,7070,8080,9090,100(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求得数学期望【解析】18【2012高考真题天津理16】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.()求这4个人中恰有2人去参加甲游戏的概率;()求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.【答案】1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论