高考数学复习:题型解法训练之立体几何解答题的解法.ppt_第1页
高考数学复习:题型解法训练之立体几何解答题的解法.ppt_第2页
高考数学复习:题型解法训练之立体几何解答题的解法.ppt_第3页
高考数学复习:题型解法训练之立体几何解答题的解法.ppt_第4页
高考数学复习:题型解法训练之立体几何解答题的解法.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二部分高考题型解法训练 专题七立体几何解答题的解法 试题特点 专题七立体几何解答题的解法 1 近三年高考各试卷立体几何考查情况统计立体几何在每一年高考中都有一个解答题 这是不变的 主要考查空间位置关系 线线 线面及面面的平行与垂直 及空间量 线线角 线面角 面面角 点线距离 点面距离 线线距离 线面距离 面面距离 一般以三棱柱 四棱柱 三棱锥 四棱锥作为考查的载体 当然 也有不规则几何体 如2006湖南卷的八面体 2007江西卷的不规则体 试题特点 专题七立体几何解答题的解法 2 主要特点 1 解答题的考查稳中求新 稳中求活 解答题在考查中经常涉及的知识及题型有 证明 平行 和 垂直 求多面体的体积 三种角的计算 有关距离的计算 多面体表面积的计算 这类问题的解法主要是化归思想 如两条异面直线所成的角转化为两相交直线所成的角 面面距离转化为线面距离 再转化为点面距离等 但近几年来 也推出了一些新题型 就是开放性试题 也是探索性的问题 如2000年的第18题 试题特点 专题七立体几何解答题的解法 2 依托知识 考查能力 由于近几年加强了对能力的考查 因此应重视空间想象能力 逻辑思维能力 化归转化能力的培养 因高考数学是通过知识考能力 本章尤其突出的是空间想象能力 而空间想象能力并不是漫无边际的胡想 而应以题设为根据 以某一几何体为依托 这样会更好的帮助你解决实际问题 提高解题能力 3 一题两法 支持新课程改革 立体几何解答题的设计 注意了求解方法既可用向量方法处理 又可用传统的几何方法解决 并且向量方法比用传统方法解决较为简单 对中学数学教学有良好的导向作用 符合数学教材改革的要求 有力地支持了新课程的改革 应试策略 专题七立体几何解答题的解法 1 平行 垂直位置关系的论证证明空间线面平行或垂直需要注意以下几点 1 理清平行 垂直位置关系的相互转化 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 2 由已知想性质 由求证想判定 即分析法与综合法相结合寻找证题思路 3 立体几何论证题的解答中 利用题设条件的性质适当添加辅助线 或面 是解题的常用方法之一 4 三垂线定理及其逆定理在高考题中使用的频率最高 在证明线线垂直时应优先考虑 应用时需要先认清所观察的平面及它的垂线 从而明确斜线 射影 面内直线的位置 再根据定理由已知的两直线垂直得出新的两直线垂直 另外通过计算证明线线垂直也是常用方法之一 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 2 空间角的计算主要步骤 一作 二证 三算 若用向量 那就是一证 二算 1 两条异面直线所成的角 平移法 在异面直线中的一条直线上选择 特殊点 作另一条直线的平行线 常常利用中位线或成比例线段引平行线 补形法 把空间图形补成熟悉的或完整的几何体 如正方体 平行六面体 长方体等 其目的在于容易发现两条异面直线间的关系 向量法 直接利用向量的数量积公式cos 注意向量的方向 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 2 直线和平面所成的角 作出直线和平面所成的角 关键是作垂线 找射影转化到同一三角形中计算 或用向量计算 用公式计算sin PM直线l M 面 是l与 所成的角 n是面 的法向量 3 二面角 平面角的作法 定义法 三垂线定理及其逆定理法 垂面法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 平面角计算法 找到平面角 然后在三角形中计算 解三角形 或用向量计算 射影面积法 cos 向量夹角公式 cos n1 n2是两面的法向量 是锐角还是钝角 注意图形和题意取舍 求平面的法向量 找 求 设a b为平面 内的任意两个向量 n x y 1 为 的法向量 则由方程组 可求得法向量n 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 3 空间距离的计算 1 两点间距离公式 线段的长度 AB A xA yA zA B xB yB zB 2 求点到直线的距离 经常应用三垂线定理作出点到直线的垂线 然后在相关的三角形中求解 也可以借助于面积相等求出点到直线的距离 可用向量法来计算 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 3 求两条异面直线间距离 一般先找出其公垂线 然后求其公垂线段的长 在不能直接作出公垂线的情况下 可转化为线面距离求解 这种情形高考不作要求 4 求点到平面的距离 一般找出 或作出 过此点与已知平面垂直的平面 利用面面垂直的性质过该点作出平面的垂线 进而计算 也可以利用 三棱锥体积法 直接求距离 有时直接利用已知点求距离比较困难时 我们可以把点到平面的距离转化为直线到平面的距离 从而 转移 到另一点上去求 点到平面的距离 求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解 向量法 N为P在面 内的射影 M n是面 的法向量 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 1 2007 南通市模拟题 如图 已知矩形ABCD PA 平面ABCD M N分别是AB PC的中点 设AB a BC b PA c 1 建立适当的空间直角坐标系 写出A B M N点的坐标 并证明MN AB 2 平面PDC和平面ABCD所成的二面角为 当 为何值时 与a b c无关 MN是直线AB和PC的公垂线段 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 解析 1 证明 以A为原点 分别以AB AD AP为x轴 y轴 z轴 建立空间直角坐标系 则A 0 0 0 B a 0 0 M 0 0 N a 0 0 0 0AB MN 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 2 P 0 0 c C a b 0 a b c 若MN是PC AB的公垂线段 则 0 即 0b c PDA是二面角P CD A的平面角 PDA 45 即二面角P CD A是45 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 点评 在高考立体几何题中 利用向量法解题 正确建立空间直角坐标系是解题的前提 同时也要熟悉向量法处理这些问题的方法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 2 2007 东北三校质检题 如图 在长方体ABCD A1B1C1D1中 AD AA1 1 AB 2 点E是棱AB上的动点 1 证明D1E A1D 2 若二面角D1 EC D为45 时 求EB的长 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 解析 解法1 1 证明 对长方体ABCD A1B1C1D1 有AB 平面AA1D1D A1D平面AA1D1D AB A1D由侧面AA1D1D是矩形且AD AA1 1 A1D AD1 AD1 AB A A1D 平面ABD1 又D1E平面ABD1 D1E A1D 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 2 过D作DG EC 垂足为G 连结D1G对长方体ABCD A1B1C1D1 有D1D 平面ABCD根据三垂线定理有D1G EC D1GD是二面角D1 EC D的平面角 二面角D1 EC D为45 则 D1GD 45 又D1D A1A 1 DG 1在矩形ABCD中AB 2 AD 1由S DEC EC DG 1得EC 2 EB 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 解法2 1 证明 对长方体ABCD A1B1C1D1 以D为坐标原点 AD DC DD1所在直线为x y z轴建立空间直角坐标系 如图所示 由AD AA1 1 AB 2 点E是棱AB上的动点 设BE m D 0 0 0 D1 0 0 1 A1 1 0 1 E 1 2 m 0 C 0 2 0 1 1 2 m 1 1 0 1 1 1 0 即D1E A1D 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 2 D1D 平面ABCD 平面ABCD的法向量 0 0 1 设平面D1EC的法向量为n x y z 由n 得n 0又 0 2 1 2y z 0又 1 2 m 1 x 2 m y z 0取y 1 z 2 x m n m 1 2 二面角D1 EC D为45 n n cos45 即2 解得m 即EB 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 点评 本题第1问事实上是考查三垂线定理 当然也可用线面垂直来证 在第二问的处理中 如果用非向量的方法 画分图是一个常用的方法 这样由于空间位置关系的失真可以避免出错 画分图就是将空间图形中的某一个平面画出来 然后用平面几何的相关知识来求边与角的信息 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 应试策略 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 3 2007 岳阳市模拟题 如图 在直三棱柱ABC A1B1C1中 AC 3 BC 4 AB 5 AA1 4 点D是AB的中点 1 求证 AC BC1 2 求证 AC1 平面CDB1 证明 解法1 1 直三棱柱ABC A1B1C1 底面三边长AC 3 BC 4 AB 5 AC BC 且BC1在平面ABC内的射影为BC AC BC1 2 设CB1与C1B的交点为E 连结DE D是AB的中点 E是BC1的中点 DE AC1 DE平面CDB1 AC1平面CDB1 AC1 平面CDB1 考题剖析 专题七立体几何解答题的解法 解法2 直三棱柱ABC A1B1C1底面三边长AC 3 BC 4 AB 5 AC BC C1C两两垂直 如图 以C为坐标原点 直线CA CB CC1分别为x轴 y轴 z轴 建立空间直角坐标系 则C 0 0 0 A 3 0 0 C1 0 0 4 B 0 4 0 B1 0 4 4 D 2 0 考题剖析 专题七立体几何解答题的解法 1 3 0 0 0 4 0 0 AC BC1 2 设CB1与C1B的交点为E 则E 0 2 2 0 2 3 0 4 DE AC1 DE平面CDB1 AC1平面CDB1 AC1 平面CDB1 考题剖析 专题七立体几何解答题的解法 点评 1 证明线线垂直方法有两类 一是通过三垂线定理或逆定理证明 二是通过线面垂直来证明线线垂直 2 证明线面平行也有两类 一是通过线线平行得到线面平行 二是通过面面平行得到线面平行 考题剖析 专题七立体几何解答题的解法 4 2007 上海黄浦区模拟题 已知正方形ABCD E F分别是AB CD的中点 将ADE沿DE折起 如图所示 记二面角A DE C的大小为 0 1 证明BF 平面ADE 2 若 ACD为正三角形 试判断点A在平面BCDE内的射影G是否在直线EF上 证明你的结论 并求角 的余弦值 解析 1 证明 EF分别为正方形ABCD的边AB CD的中点 EB FD 且EB FD 四边形EBFD为平行四边形 BF ED ED平面AED 而BF平面AED BF 平面ADE 考题剖析 专题七立体几何解答题的解法 考题剖析 专题七立体几何解答题的解法 2 解法1 如右图 点A在平面BCDE内的射影G在直线EF上 过点A作AG垂直于平面BCDE 垂足为G 连结GC GD ACD为正三角形 AC AD CG GD G在CD的垂直平分线上 点A在平面BCDE内的射影G在直线EF上 过G作GH垂直于ED于H 连结AH 则AH DE 所以 AHG为二面角A DE C的平面角 即 AHG 设原正方体的边长为2a 连结AF 在折后图的 AEF中 AF a EF 2AE 2a 即 AEF为直角三角形 AG EF AE AF 考题剖析 专题七立体几何解答题的解法 AG a 在Rt ADE中 AH DE AE AD AH a GH cos 解法2 点A在平面BCDE内的射影G在直线EF上 连结AF 在平面AEF内过点A作AG EF 垂足为G ACD为正三角形 F为CD的中点 AF CD又因EF CD 所以CD 平面AEF AG 平面AEF AG CD又AG EF且CD EF F CD平面BCDE EF平面BCDE AG 平面BCDE G 为A在平面BCDE内的射影G 即点A在平面BCDE内的射影在直线EF上 下同解法1 考题剖析 专题七立体几何解答题的解法 解法3 点A在平面BCDE内的射影G在直线EF上 连结AF 在平面AEF内过点A作AG EF 垂足为G ACD为正三角形 F为CD的中点 AF CD又因EF CD 所以CD 平面AEF CD平面BCDE 平面AEF 平面BCDE又 平面AEF 平面BCDE EF AG EF AG 平面BCDE G 为A在平面BCDE内的射影G 即点A在平面BCDE内的射影在直线EF上下同解法1 考题剖析 专题七立体几何解答题的解法 点评 折叠问题一直以来是立体几何解答题中的热门问题 这类问题一方面考查学生的空间想象能力 另一方面考查空间点线面关系的推理能力 解决这类问题时 要注意到折叠前与折叠后空间关系与空

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论