高一数学检测卷必修一、五含答案.pdf_第1页
高一数学检测卷必修一、五含答案.pdf_第2页
高一数学检测卷必修一、五含答案.pdf_第3页
高一数学检测卷必修一、五含答案.pdf_第4页
高一数学检测卷必修一、五含答案.pdf_第5页
已阅读5页,还剩6页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

临川一中检测卷临川一中检测卷 4 4 一 选择题 本大题共一 选择题 本大题共 1212 小题 共小题 共 60 060 0 分 分 1 下列集合中与 2 3 是同一集合的是 A B C D 答案 D 分析 利用集合相等的定义直接求解 详解 与 2 3 是同一集合的是 3 2 故选 D 2 函数的定义域为 A B C D 答案 B 解析 分析 根据函数 f x 的解析式 求出使解析式有意义的自变量取值范围即可 详解 函数 解得 x 0 且 x 1 f x 的定义域为 0 1 1 故选 B 3 已知数列 an 满足 任意 m n N 都有 an am an m 且 a1 1 2 那么 a5 A 1 32 B 1 16 C 1 4 D 1 2 解析 由题意 得 a2 a1a1 1 4 a3 a1 a2 1 8 则 a5 a3 a2 1 32 答案 A 4 已知 a1 1 an n an 1 an n N 则数列 an 的通项公式是 A an 2n 1 B an 2n 3 C an n D an n2 答案 C 5 已知 tan 3 则 A 2 B C 3 D 答案 B 解析 分析 直接利用二倍角公式以及同角三角函数基本关系式化简求值即可 详解 tan 3 故选 B 6 已知向量 向量 若向量 在向量 方向上的投影为 则实数x等 于 A 3 B 2 C D 答案 D 解析 分析 根据方向投影的概念列式 可求得 x 3 详 解 向 量在 向 量方 向 上 的 投 影 为 解得 x 3 故选 D 7 若f x 2sin2x的最小正周期为T 将函数f x 的图象向左平移 所得图象对应的 函数为 A B C D 答案 B 解析 分析 由三角函数的周期的公式得 T 由函数图象的平移得 g x 2sin2 x 2sin2x 得解 详解 由 f x 2sin2x 可得 此函数的最小正周期为 T 将函数 f x 的图象向左平移 所得图象对应的函数为 g x 2sin2 x 2sin2x 故选 B 2 8 已知 b log827 则a b c的大小关系为 A B C D 答案 D 解析 分析 可以得出 并且 从而得出 a b c 的大小关系 详解 log25 log23 1 a b c 故选 D 9 已知 f x 2a 1 x 4 x 1 ax x 1 数列 an n N 满足 an f n 且 an 是递增数列 则 a 的取值范围是 A 1 B 1 2 C 1 3 D 3 解析 因为 an 是递增数列 所以 a 1 a2 2a 1 4 解得 a 3 则 a 的取值范围是 3 答案 D 10 已知函数是幂函数 若f x 为增函数 则m等于 A B C 1 D 或 1 答案 C 解析 分析 根据幂函数的定义与性质 即可求出 m 的值 详解 函数 f x 3m 2 2m xm是幂函数 则 3m 2 2m 1 解得 m 1 或 m 又 f x 为增函数 则 m 1 满足条件 即 m 的值为 1 故选 C 11 设正实数a b满足 3 a 7b 下面成立的是 A B C D 答案 B 解析 分析 设 3 a 7b t t 0 则 a log 3t b log7t 从而 log7t logt3 log73 根据对数函数的单调 性即可比较 与 和 1 的大小 详解 正实数 a b 满足 3 a 7b 设 3 a 7b t t 0 则 a log 3t b log7t log7t logt3 log73 故选 B 12 已知定义在 R 上的奇函数 f x 且满足 f 1 x f 3 x 且 f 1 0 若函数 g x x 6 f 1 cos4x 3 有且只有唯一的零点 则 f 2018 f 2019 A 1 B C D 3 答案 C 解析 分析 根据题意 由 f 1 x f 3 x 变形可得 f x f 4 x 由函数的奇偶性可得 f x f x 综合可得 f x f 4 x 即 f x f x 4 即函数 f x 为周期为 4 的 周期函数 据此可得 f 2 f 2 且 f 2 f 2 分析可得 f 2 f 2 0 对 于 g x x 6 f 1 cos4x 3 由函数奇偶性的定义可得函数 g x 为偶函数 结合函数零点 个数分析可得 g 0 f 1 3 0 则 f 1 3 结合 f x 的周期性可得 f 2018 与 f 2019 的值 相加即可得答案 详解 根据题意 函数 f x 且满足 f 1 x f 3 x 则有 f x f 4 x 又由 f x 为奇函数 则有 f x f x 则有 f x f 4 x 即 f x f x 4 即函数 f x 为周期为 4 的周期函数 则有 f 2 f 2 且 f 2 f 2 分析可得 f 2 f 2 0 对于 g x x 6 f 1 cos4x 3 有 g x x 6 f 1 cos4 x 3 x6 f 1 cos4x 3 g x 即函数 g x 为偶函数 若函数 g x x 6 f 1 cos4x 3 有且只有唯一的零点 则必有 g 0 f 1 3 0 则 f 1 3 f 2018 f 2 2016 f 2 0 f 2019 f 3 2016 f 3 f 1 f 1 3 则 f 2018 f 2019 3 故选 C 二 填空题 本大题共二 填空题 本大题共 4 4 小题 共小题 共 20 020 0 分 分 13 已知集合A 2 3 6 则集合A的真子集的个数是 答案 7 解析 分析 根据含有 n 个元素的有限集合的真子集有个 容易得出集合 A 的真子集个数为个 得到结果 详解 因为集合 A 中有 3 个元素 所以集合 A 的真子集有个 故答案为 7 14 已知函数 则 答案 解析 分析 推导出 f 2 从而 f f 2 f sin 由此能求出结果 详解 函数 f 2 f f 2 f sin sin 1 故答案为 1 15 若数列 an 的前 n 项和 Sn 3n2 2n 1 则数列 an 的通项公式 an 解析 当 n 1 时 a1 S1 3 12 2 1 1 2 当 n 2 时 an Sn Sn 1 3n2 2n 1 3 n 1 2 2 n 1 1 6n 5 显然当 n 1 时 不 满足上式 故数列的通项公式为 an 2 n 1 6n 5 n 2 答案 2 n 1 6n 5 n 2 16 已知向量 若 则 与 的夹角为 答案 解析 分析 由向量共线的运算得 sin125 cos125 0 由平面向量数量积及 其夹角 两角和差的正弦 cos sin200 cos70 由 0 180 即可得解 详解 因为 又 则不妨设 sin125 cos125 0 设与的夹角为 则 cos sin200 cos70 由 0 180 所以 70 故答案为 70 三 解答题 本大题共三 解答题 本大题共 6 6 小题 共小题 共 70 070 0 分 分 17 已知 Sn为正项数列 an 的前 n 项和 且满足 Sn 1 2a 2 n 1 2an n N 1 求 a1 a2 a3 a4的值 2 求数列 an 的通项公式 解 1 由 Sn 1 2a 2 n 1 2an n N 可得 a1 1 2a 2 1 1 2a1 解得 a1 1 S2 a1 a2 1 2a 2 2 1 2a2 解得 a2 2 同理 a3 3 a4 4 2 Sn 1 2a 2 n a n 2 当 n 2 时 Sn 1 1 2a 2 n 1 1 2an 1 得 an an 1 1 an an 1 0 由于 an an 1 0 所以 an an 1 1 又由 1 知 a1 1 故数列 an 为首项为 1 公差为 1 的等差数列 故 an n 18 已知函数 1 求函数f x 的单调递减区间 2 设 f x 的最小值是 最大值是 3 求实数m n的值 答案 1 2 解析 分析 1 利用边角公式结合辅助角公式进行化简 结合单调性的性质进行求解即可 2 求出角的范围 结合函数的单调性和最值关系建立方程进行求解即可 详解 1 sin2x m 2cos 2x 1 n m sin2x cos2x n msin 2x n m 0 由 2k 2x 2k k Z 即 k x k k Z 即函数的单调递减区间为 k k k Z 2 当时 2x 则 sin 2x 1 f x 的最小值是 最大值是 3 f x 的最大值为 m n 3 最小值为m n 1 得 m 2 n 1 19 设是两个不共线的非零向量 1 设 那么当实数t为何值时 A B C三点共线 2 若 且 与 的夹角为 60 那么实数x为何值时的值最小 最小值 为多少 答案 1 2 6 解析 分析 1 由 A B C 三点共线知 存在实数 使 1 代入 可得 t 2 cos60 2x 2 2 4x22 4x 2 16x 2 4 16x 2 4 4 利用二次函数求最值可 得 详解 1 由A B C三点共线知 存在实数 使 1 则 1 t 则 t 2 cos60 2x 2 2 4x22 4x 2 16x 2 4 16x 2 4 4 当x 时 2x 的最小值为 6 20 已知数列 an 中 an 1 1 a 2 n 1 n N a R 且 a 0 1 若 a 7 求数列 an 中的最大项和最小项的值 2 若对任意的 n N 都有 an a6成立 求 a 的取值范围 解 1 an 1 1 a 2 n 1 n N a R 且 a 0 又 a 7 an 1 1 2n 9 n N 结合函数 f x 1 1 2x 9的单调性 可知 1 a1 a2 a3 a4 a5 a6 a7 an 1 n N 数列 an 中的最大项为 a5 2 最小项为 a4 0 2 an 1 1 a 2 n 1 1 1 2 n 2 a 2 已知对任意的 n N 都有 an a6成立 结合函数 f x 1 1 2 x 2 a 2 的单调性 可知 5 2 a 2 6 即 10 a 8 即 a 的取值范围是 10 8 21 已知在平面直角坐标系中 点A B C的坐标分别为A cos sin B 2 0 C 0 2 0 1 若 求 的值 2 若 求的值 答案 1 2 解析 分析 1 先求出和 然后根据向量模的坐标公式列式可解得 tan 1 再得 2 根据 可得 sin2 再根据原式 sin2 详解 1 2 cos sin cos 2 cos 由 得 2 2 5 4cos 5 4sin 即 tan 1 又 0 2 2 cos cos sin 2 sin cos 2 2cos sin2 2sin 2 2 sin cos sin cos sin2 sin cos 2 1 sin2 22 已知 f x 是定义在 R 上的奇函数且 f 2 3 当 x 0 时 f x a x 1 其中 a 0 且 a 1 1 求的值 2 求函数f x 的解析式 3 已知 g x log2x 若对任意的x1 1 4 存在使得 f mx1 1 g x2 其中 m 0 成立 求实数m的取值范围 答案 1 0 2 3 解析 分析 1 根据题意 由奇函数的性质可得 0 即可得答案 2 根据题意 由函数的奇偶性可得 f 2 3 结合函数的解析式可得 f 2 a 2 1 3 解 可得 a 2 解可得当 x 0 时 f x 2 x 1 当 x 0 时 结合函数的奇偶性与解析式分析可 得 f x f x 2 x 1 综合可得答案 3 根据题意 由函数的解析式分析可得 x1 1 4 时 f mx1 的取值范围和当 时 g x2 的取值范围 结合题意可得 2 m 解可得 m 的取值范围 即可得答案 详解 1 根据题意 f x 为奇函数 即有f x f x 0 则 0 2 根据题意 f x 是定义在R上的奇函数且f 2 3 则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论