




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
随机信号的时域统计分析 信号的相关分析 测试信号的分析与处理 数字信号处理 随机信号的时域统计分析 随机信号 不能用确定的数学关系式来描述 不能预测其未来任何瞬时值 任何一次观测值只代表在其变动范围中可能产生的结果之一 但其值的变动服从统计规律 几个相关概念 1 样本函数xi t 2 样本记录xi t t 0 T3 随机过程 xi t x1 t x2 t xi t 随机信号的描述采用概率论与数理统计的方法 一 概述 一 均值 方差和均方值1 均值表示信号的常值量的大小 2 方差描述随机信号的波动量的大小 它是相对于均值偏离值的平方的均值 即 二 随机信号的主要统计特征 3 均方值描述随机信号的强度 它是随机信号平方的均值 即均方值的正平方根称为均方根值xrms 又称为有效值 表示了信号的平均能量 功率 当均值也就是信号的常值分量为0时 均值 方差 和均方值之间存在如下关系 二 概率密度函数随机信号的概率密度函数是表示信号幅值落在指定区间内的概率 当样本函数的记录时间T趋于无穷大时 Tx T的比值就是幅值落在区间内的概率 记为 概率密度函数提供了随机信号幅值分布的信息 是随机信号的主要特征参数之一 定义幅值概率密度函数为 三 随机信号分类 三个概念 统计特征参数 集合平均 时间平均 分类 随机过程 平稳随机过程 非平稳随机过程 各态历经随机过程 信号的相关分析 在测试工作中 有时需要就两个以上的信号研究其相互关系 因此我们引入一个很重要的概念 相关 信号的相关性反映了一个信号在不同时刻 或两个信号之间的线性关系或相似程度 对信号做相关分析在振动测试 雷达测距 声发射探伤 以及通信 甚至控制系统中都得到了广泛应用 例如 利用已知的发射端信号与接收端信号做相关分析 以确定接收端是否接收到了发射端发出的信号 一 概述 为研究时间轴上平移了 单位后的各态历经随机信号x t 与原信号x t 之间的相关特性 引入了自相关函数 对于周期信号 自相关函数表达为 二 自相关函数 一 概念 二 相关系数 自相关系数的绝对值介于小于1 其绝对值越趋近于1 表明两变量线性相关程度越大 若为负值 则表明一变量随着另一变量的增加而减小 若趋近于零 则表明两变量之间是完全无关的 但可能存在着某种非线性的相关关系或者函数关系 自相关系数 三 自相关函数基本性质 1 自相关函数是偶函数 即Rxx Rxx 2 值不同 Rxx 不同 当 0时 Rxx 的值最大 3 周期函数的自相关函数仍为同频率的周期函数若有一函数x t 为周期函数 则x t x t nT 其自相关函数为 正弦信号的自相关函数是同频率的余弦信号 且保留了幅值和频率信息 但丢失了相位信息 见教材P23例3 由此 若信号中含有周期成分 其自相关函数也必定含有同频率的周期成分 此性质可用来鉴别随机信号中的周期成分 4 随机信号的频带越宽 Rxx 衰减越快 且近似于集中在原点的 函数 频带越窄 Rxx 衰减越慢 5 当 时 x t 与x t 之间不存在内在联系 彼此无关 即 6 如果信号是纯随机噪声 其自相关函数将随 的增大快速衰减 四 自相关函数的物理意义 1 表达了信号现在与时间坐标移动了 时间后的信号之间的相似程度 2 建立了随机信号一个时刻的幅值与另一个时刻幅值之间的依赖关系 3 描述了在观测时间T内两个幅值乘积的集合平均 4 从自相关函数的图形可分析信号的构成性质 从噪声背景下提取有用信号 五 自相关函数的工程应用 自相关分析主要用来检测混淆在随机信号中的确定性信号 因为周期信号或任何确定性信号在所有时差 值上都有自相关函数值 而随机信号在 值足够大时其自相关函数趋于零 案例 机械加工表面粗糙度自相关分析 被测工件 相关分析 提取出回转误差等周期性的故障源 案例2 自相关测转速 理想信号 干扰信号 实测信号 自相关系数 提取周期性转速成分 算法 令x t y t 二个信号之间产生时差 再相乘和积分 就可以得到 时刻二个信号的相关性 图例 自相关函数 x t y t 三 互相关函数 一 互相关函数概念 两个随机信号样本x t 和y t y t 是y t 时移 后的样本 则 其互相关函数定义为 同样地 以有限长样本作互相关函数的估计 二 互相关函数的基本性质 1 互相关函数并非偶函数 也并非奇函数 而是 Rxy Ryx 2 互相关函数不一定在 0处为峰值 其峰值点偏离原点的距离反映了两个信号最大相关时的时间间隔 d 3 同频率的两个周期信号的互相关函数也是具有同频率的周期信号 而且保留了原信号的相位信息 见P25例4 6 两个统计独立的随机信号 当均值为零时 Rxy 0 7 两个同频率的正余弦函数不相关 8 周期信号与随机信号的互相关函数为0 4 不同频率的周期信号互不相关 Rxy 0 5 两信号之间的相关程度总是小于或等于信号自身的相关程度 三 互相关函数的应用 工程上互相关函数被广泛应用于传播问题 案例1 地下输油管道漏损位置的探测 t t 案例2 光电信号互相关分析测速 案例3 地震位置测量 数字信号处理 目前测试技术中所采用的传感器等装置输出的大多仍是模拟信号 而输出信号中往往夹杂了很多干扰噪声 我们利用相关分析或功率谱分析等方法可以消除噪声影响来提取信号特征 但利用模拟信号来做这样的处理往往不便或难以实现 数字方法处理信号可以在专用的信号处理仪上进行 也可以在通用计算机上通过编程来实现 计算机的迅猛发展为我们用数字方法处理信号提供了极大的便利并显示出了很大的优越性 两方面问题 模拟信号的数字化 数字方法处理数字序列 1 概述 2 测试信号数字化处理的基本步骤 3 数字信号处理的优势 1 用数学计算和计算机显示代替复杂的电路和机械结构 2 计算机软硬件技术发展的有力推动 a 多种多样的工业用计算机 b 灵活 方便的计算机虚拟仪器开发系统 一 信号的数字化 一 信号的采样 采样是将采样脉冲序列p t 与信号x t 相乘 取离散点x nt 的值的过程 X 0 X 1 X 2 X n 每周期应该有多少采样点 xs t 由一系列冲激函数构成 每一个冲激函数的强度等于连续信号在该时刻的抽样值x nTs 二 采样过程的频谱及采样定理 信号的采样可以通过采样周期为Ts 采样频率为fs 1 Ts的单位周期脉冲信号p t 与连续信号x t 相乘得到 我们关注三个问题 采样与频谱 混频现象 采样定理1 采样与频谱 信号x t 与单位周期脉冲信号相乘后 其频谱发生了周期延拓 即X f 分别延拓到1 Ts为中心的频谱 频谱的幅度乘了一个因子1 Ts 2 混频现象 模拟信号在时域中按时隔Ts离散化 在频域中按1 Ts周期化 采样间隔太小 需处理的数字序列很长 计算工作量猛增 3 采样定理 很显然 采样间隔过大 采样频率过低 或采样间隔过小 采样频率过高 都不好 间隔过大 则平移距离1 Ts过小那么移至各采样脉冲所在处的X f 就会发生混叠 若要求不发生频率混叠 首先需要使被采样的模拟信号x t 称为有限带宽信号 不满足此要求的信号 在采样之前使其先通过模拟低通滤波器滤去高频成分 使其成为带限信号 称为抗混叠滤波预处理 然后使得采样频率fs大于带限信号最高频率fh的两倍 即 fs 1 Ts 2fh 把该频谱通过一个中心频率为零 带宽为 fs 2 的理想低通滤波器就可能准确恢复x t 这就是采样定理 需注意 满足采样定理 只保证不发生频率混叠 而不能保证此时的采样信号能真实地反映原信号x t 工程实际中采样频率通常大于信号中最高频率成分的3到5倍 三 量化和量化误差 将采样所得信号的电平幅值分为一组有限个离散电平 每个量化电平对应一个二进制数码 使离散信号进一步变成数字信号 称为量化 当采样信号的实际电平落在两个相邻量化电平之间时 就要舍入到相近的一个量化电平上 该量化电平与实际电平的差值称为量化误差 n A D转换器的位数越高 则量化误差越小 但我们需要依需求的精度而定 位数越高 则成本显著增加 转换速率也会明显下降 信号的6等分量化过程 A D转换器量化时的技术指标 3 模拟信号的输入范围 如 5V 5V 10V 10V等 1 分辨率 用输出二进制数码的位数表示 位数越多 量化误差越小 分辨力越高 常用有8位 10位 12位 16位等 2 转换速度 指完成一次转换所用的时间 如 1ms 1KHz 10us 100kHz 四 信号截断 能量泄漏及窗函数 1 截断与泄漏 数字处理需要截断过长的信号时间历程 而只对有限长信号进行处理 信号乘以有限宽的窗函数就实现了截断 窗函数就是在模数转换过程中或数据处理过程中对时域信号取样时所采用的截断函数 图示为时域余弦函数被矩形窗函数截断后其时频域变化情况 由于信号在时域上被截断而在频域上出现附加频率的现象称为泄漏 2 几种常用的窗函数简介 由窗函数的频谱可见 在 2 2 之间的部分称为主瓣 其余两旁的部分 即附加频率分量称为旁瓣 当窗宽 增大时 主瓣和旁瓣的宽度都变窄 主瓣高度恒等于窗宽 时 G 那么无限加大窗宽可实现无泄漏 但信号无截断则无意义 因此 对时间窗函数的要求是 其频谱的主瓣尽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 疼痛病人的延续性护理
- 2025年招标采购从业人员专业技术能力考试(招标采购项目管理中级)冲刺试题及答案四
- 退役士兵安置政策解读
- 广东省汕尾市海丰县2024-2025学年高一下学期第二次月考历史考点及答案
- 2025农药购销合同样本
- 手术室护理教学课件
- 球鞋护理商业计划书
- 2025招聘员工合同
- 2025终止劳动合同告知书(工会)
- 2025混凝土供应合同
- 2025至2030中国矿山机械行业发展趋势分析与未来投资战略咨询研究报告
- 2025年乡镇文旅部门工作人员招聘考试必-备知识点与模拟题集
- 2025年法学硕士专业知识考试试卷及答案解析
- GB 26488-2025镁合金压铸安全生产规范
- 森林消防队森林火灾扑救知识培训考试题库题库(附含答案)
- 焦虑症的课件
- 湖南美术出版社二年级上册美术教学计划
- 2025年西藏自治区事业单位招聘考试综合类专业能力测试试卷(新闻类)押题卷
- VOCs治理设备培训
- 2025年招聘面试技巧指南面试官角度下的面试题预测与应对策略
- 答案时代:AI顾问式电商崛起
评论
0/150
提交评论