计量经济学ppt课件.ppt_第1页
计量经济学ppt课件.ppt_第2页
计量经济学ppt课件.ppt_第3页
计量经济学ppt课件.ppt_第4页
计量经济学ppt课件.ppt_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 Cross SectionalDataAnalysis SimpleRegressionAnalysisMultipleRegressionAnalysis Estimation Inference ForecastingBinaryorDummyVariableHeteroskedasticity 异方差性 FunctionalFormSpecification 2 RecallonSimpleRegression SimpleLinearRegressionModel OLSEstimator Assumptions PropertiesofOLSestimators Goodness of Fit coefficientofdetermination R squared 3 y4 y1 y2 y3 x1 x2 x3 x4 u1 u2 u3 u4 x y Populationregressionline sampledatapointsandtheassociatederrorterms E y x b0 b1x 4 y4 y1 y2 y3 x1 x2 x3 x4 1 2 3 4 x y Sampleregressionline sampledatapointsandtheassociatedestimatederrorterms residual 5 MotivationforMultipleRegression Example1 returnandeducationWeareinterestedintheeffectofeducationonwageholdingfixedallotherfactorsaffectingwage Hereweusespecifyingthefollowingmodel Comparingthismodelwiththesimpleone 6 MotivationforMultipleRegression Example2 CEOcompensationandfirmperformanceWeareinterestedintherelationshipbetweenCEOsalaryandaspecifyingfactormeasuringfirmperformance salesandCEOsalary returnofequityandCEOsalary 7 MultipleRegressionAnalysis Estimation y b0 b1x1 b2x2 bkxk u intercept slopeparameters disturbance ExplainedVariableRegressandResponsevariableDependentvaiable ExplanatoryVariableRegressorControrlvariableIndependentvariable Populationmodel 8 OrdinaryLeastSquares Theordinaryleastsquares OLS estimatorisdefinesasthevaluethatminimizesthesumofsquaredresiduals Thatistominimize HowtoderivetheOLSestimators WhatassumptionsarenecessaryforOLSestimatorexisting Thinkingofotherestimatorsbasedonothermetrics 9 OLSestimatorsforSimpleRegressionmodel 10 OLSestimatorsforMultipleRegressionModel Whatisthematrixform Howtoderivetheestimators InordertogetOLSestimator doweneedanyothercondition 11 InterpretingMultipleRegression 12 A PartiallingOut Interpretation对排除其他变量影响的解释 13 PartiallingOut continued Considerthecasewithk 2independentvariables Previousequationimpliesthatregressingyonx1andx2givessameeffectofx1asregressingyonresidualsfromaregressionofx1onx2Thismeansonlythepartofxi1thatisuncorrelatedwithxi2arebeingrelatedtoyi sowe reestimatingtheeffectofx1onyafterx2hasbeen partialledout 14 SimplevsMultipleRegEstimate 15 16 Example Participationin401 K PensionPlans 17 Goodness of Fit 18 Goodness of Fit continued Howdowethinkabouthowwelloursampleregressionlinefitsoursampledata Cancomputethefractionofthetotalsumofsquares SST thatisexplainedbythemodel callthistheR squaredofregressionR2 SSE SST 1 SSR SST 19 Goodness of Fit continued 20 MoreaboutR squared R2canneverdecreasewhenanotherindependentvariableisaddedtoaregression andusuallywillincreaseBecauseR2willusuallyincreasewiththenumberofindependentvariables itisnotagoodwaytocomparemodels 21 AssumptionsforUnbiasedness Populationmodelislinearinparameters y b0 b1x1 b2x2 bkxk uWecanusearandomsampleofsizen xi1 xi2 xik yi i 1 2 n fromthepopulationmodel sothatthesamplemodelisyi b0 b1xi1 b2xi2 bkxik uiE u x1 x2 xk 0 implyingthatalloftheexplanatoryvariablesareexogenousNoneofthex sisconstant andtherearenoexactlinearrelationshipsamongthem 22 TooManyorTooFewVariables Whathappensifweincludevariablesinourspecificationthatdon tbelong Thereisnoeffectonourparameterestimate andOLSremainsunbiasedWhatifweexcludeavariablefromourspecificationthatdoesbelong OLSwillusuallybebiased 23 OmittedVariableBias 遗漏变量引起的偏误 24 OmittedVariableBias cont 25 OmittedVariableBias cont 26 OmittedVariableBias cont 27 SummaryofDirectionofBias 28 OmittedVariableBiasSummary Twocaseswherebiasisequaltozerob2 0 thatisx2doesn treallybelonginmodelx1andx2areuncorrelatedinthesampleIfcorrelationbetweenx2 x1andx2 yisthesamedirection biaswillbepositiveIfcorrelationbetweenx2 x1andx2 yistheoppositedirection biaswillbenegative 29 TheMoreGeneralCase Technically wecansignthebiasforthemoregeneralcaseonlyifalloftheincludedx sareuncorrelatedTypically ignoringallotherexplanatoryvariablesisavalidpracticeonlywheneachoneisuncorrelatedwiththeincludedvariables 30 VarianceoftheOLSEstimators InadditiontoknowingthecentraltendenciesoftheOLSestimators wewanttothinkabouthowtheOLSestimatorsspreadouttothetrueparameters Assumption5 Var u x1 x2 xk s2 Homoskedasticity 31 VarianceofOLS cont Letxstandfor x1 x2 xk AssumingthatVar u x s2alsoimpliesthatVar y x s2The4assumptionsforunbiasedness plusthishomoskedasticityassumptionareknownastheGauss Markovassumptions 32 VarianceofOLS cont 33 ComponentsofOLSVariances Theerrorvariance alargers2impliesalargervariancefortheOLSestimatorsThetotalsamplevariation alargerSSTjimpliesasmallervariancefortheestimatorsLinearrelationshipsamongtheindependentvariables alargerRj2impliesalargervariancefortheestimators 34 MisspecifiedModels 35 MisspecifiedModels cont Whilethevarianceoftheestimatorissmallerforthemisspecifiedmodel unlessb2 0themisspecifiedmodelisbiasedAsthesamplesizegrows thevarianceofeachestimatorshrinkstozero makingthevariancedifferencelessimportant模型中包含多余的解释变量会引起估计方差偏大 模型中遗漏了重要的变量会引起估计不再无偏 且方差偏小 但是当包含的或遗漏的变量与保留变量无关时 不会对估计量的无偏性和方差产生影响 36 EstimatingtheErrorVariance Wedon tknowwhattheerrorvariance s2 is becausewedon tobservetheerrors uiWhatweobservearetheresiduals iWecanusetheresidualstoformanestimateoftheerrorvariance 37 ErrorVarianceEstimate cont df n k 1 ordf n k 1df i e degreesoffreedom isthe numberofobservations numberofestimatedparameters 38 TheGauss MarkovTheorem Givenour5Gauss MarkovAssumptionsitcanbeshownthatOLSis BLUE Best ofsmallestvariance Linear linearonobservationsofdependentvariable UnbiasedEstimatorThus iftheassumptionshold useOLS 39 40 ClassicalLiterature J M Keynes TheGeneralTheoryofEmplyment Intreast andMoney NewYork Harcourt Brace 1936 T Haavelmo MethodsofMeasuringtheMarginalPropensitytoConsume JASS 42 1942 105 112 Tounderstand marginalpropensitytoconsume and investmentmultiplier 41 UsingEviewsforLinearRegressions CreatingaworkfileinEviewsImportdatainEviewsDatahandlinginEviewsDataViewsinEviewsSpecifyinganequationinEviewsEstimatinganequationinEviewsEquationoutputinEviewsWorkingw

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论