高中数学必修4教案-三角恒等变换_第1页
高中数学必修4教案-三角恒等变换_第2页
高中数学必修4教案-三角恒等变换_第3页
高中数学必修4教案-三角恒等变换_第4页
高中数学必修4教案-三角恒等变换_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档 1欢迎下载 第三章第三章 三角恒等变换三角恒等变换 本章教材分析本章教材分析 本章知识框图本章知识框图 本章学习的主要内容是两角和与差的正弦 余弦和正切公式 以及运用这些公式进行简 单的恒等变换 变换是数学的重要工具 也是数学学习的主要对象之一 在本册第一章 学生 接触了同角三角函数公式 在本章 学生将运用向量方法推导两角差的余弦公式 由此出发导 出其他的三角变换公式 并运用这些公式进行简单的三角恒等变换 三角恒等变换位于三角 函数与数学变换的结合点上 通过本章学习 使学生在学习三角恒等变换的基本思想和方法 的过程中 发展推理能力和运算能力 并体会三角恒等变换的工具性作用 学会它们在数学中 的一些应用 本章内容安排按两条线进行 一条明线是建立公式 学习变换 一条暗线就是发展推理能 力和运算能力 并且发展能力的要求不仅仅体现在学习变换过程之中 也体现在建立公式的 过程之中 因此在本章教学中 教师要特别注意恰时恰点地提出问题 引导学生用对比 联系 化归的观点去分析 处理问题 使学生能依据三角函数式的特点 逐渐明确三角函数恒等变 换不仅包括式子的结构形式变换 还包括式子中角的变换 以及不同三角函数之间的变换 强 化运用数学思想方法指导设计变换思路的意识 突出数学思想方法的教学 在类比 推广 特殊化等一般逻辑思考方法上进行引导 本 章不仅关注使学生得到和 差 角公式 而且还特别关注公式推导过程中体现的数学思想方法 例 如 在两角差的余弦公式这一关键性问题的解决中体现了数形结合思想以及向量方法的应用 从 两角差的余弦公式推出两角和与差的正弦 余弦 正切公式 二倍角的正弦 余弦 正切公 式 在这个过程中 始终引导学生体会化归思想 在应用公式进行恒等变换的过程中 渗透了 观察 类比 推广 特殊化 化归等思想方法 特别是充分发挥了 观察 思考 探究 等栏 目的作用 对学生解决问题的一般思路进行引导 这对学生养成科学的数学思考习惯能起到 积极的促进作用 另外 还在适当的时候对三角变换中的数学思想方法作了明确的总结 例如 在 旁白中有 倍是描述两个数量之间关系的 2 是 的二倍 4 是 2 的二倍 这里蕴含着换元 的思想 等 都是为了加强思想方法而设置的 两角和与差的正弦 余弦 正切公式和二倍角公式是历届高考考查的 重点 和 热点 在高考中占有重要的地位 主要考查对这十一个公式的正用 逆用 变形用 考查对公式的 熟练掌握程度和灵活运用能力 其考查难度属低档 这就要求我们不要过分引导学生去挖掘 一些特殊的变化技巧 应把主要精力放在学生掌握数学规律和通性通法上 教师在教学中 要注意控制好难度 因为近几年的高考中对三角部分的考查难度降低 但 教材中部分习题却有一定难度 因此教师要把握好难度 本章教学时间约需 8 课时 具体分配如下 仅供参考 节 次标 题课 时 3 1 1 两角差的余弦公式1 课时 3 1 2 两角和与差的正弦 余弦 正切公式2 课时 3 1 3 二倍角的正弦 余弦 正切公式1 课时 精品文档 2欢迎下载 3 2 简单的三角恒等变换2 课时 本章复习2 课时 3 13 1 两角和与差的正弦 余弦和正切公式两角和与差的正弦 余弦和正切公式 3 1 13 1 1 两角差的余弦公式两角差的余弦公式 整体设计整体设计 教学分析教学分析 本节是以一个实际问题做引子 目的在于从中提出问题 引入本章的研究课题 在用方程 的思想分析题意 用解直角三角形的知识布列方程的过程中 提出了两个问题 实际问题 中存在研究像 tan 45 这样的包含两个角的三角函数的需要 实际问题中存在研究像 sin 与 tan 45 这样的包含两角和的三角函数与 45 单角的三角函数的关系的需要 以实例引入课题也有利于体现数学与实际问题的联系 增强学生的应用意识 激发学生学习 的积极性 同时也让学生体会数学知识产生 发展的过程 本节首先引导学生对 cos 的结果进行探究 让学生充分发挥想象力 进行猜想 给 出所有可能的结果 然后再去验证其真假 这也展示了数学知识的发生 发展的具体过程 最 后提出了两种推导证明 两角差的余弦公式 的方案 方案一 利用单位圆上的三角函数线进 行探索 推导 让学生动手画图 构造出 角 利用学过的三角函数知识探索存在一定的难 度 教师要作恰当的引导 方案二 利用向量知识探索两角差的余弦公式时 要注意推导的层 次性 在回顾求角的余弦有哪些方法时 联系向量知识 体会向量方法的作用 结合有关 图形 完成运用向量方法推导公式的必要准备 探索过程不应追求一步到位 应先不去理 会其中的细节 抓住主要问题及其线索进行探索 然后再反思 予以完善 补充完善的过程 既 要运用分类讨论的思想 又要用到诱导公式 本节是数学公式的教学 教师要遵循公式教学的规律 应注意以下几方面 要使学生 了解公式的由来 使学生认识公式的结构特征 加以记忆 使学生掌握公式的推导和证 明 通过例子使学生熟悉公式的应用 灵活运用公式进行解答有关问题 三维目标三维目标 1 通过让学生探索 猜想 发现并推导 两角差的余弦公式 了解单角与复角的三角函数之 间的内在联系 并通过强化题目的训练 加深对两角差的余弦公式的理解 培养学生的运算能 力及逻辑推理能力 提高学生的数学素质 2 通过两角差的余弦公式的运用 会进行简单的求值 化简 证明 体会化归思想在数学当 中的运用 使学生进一步掌握联系的观点 自觉地利用联系变化的观点来分析问题 提高学生 分析问题 解决问题的能力 3 通过本节的学习 使学生体会探究的乐趣 认识到世间万物的联系与转化 养成用辩证与联 系的观点看问题 创设问题情境 激发学生分析 探求的学习态度 强化学生的参与意识 从 而培养学生分析问题 解决问题的能力和代换 演绎 数形结合等数学思想方法 重点难点重点难点 教学重点 通过探究得到两角差的余弦公式 教学难点 探索过程的组织和适当引导 课时安排课时安排 1 课时 教学过程教学过程 导入新课导入新课 思路思路 1 1 问题导入 播放多媒体 出示问题 让学生认真阅读课本引例 在用方程的思想 分析题意 用解直角三角形的知识布列方程的过程中 提出了两个问题 实际问题中存在 研究像 tan 45 这样的包含两个角的三角函数的需要 实际问题中存在研究像 sin 精品文档 3欢迎下载 与 tan 45 这样的包含两角和的三角函数与 45 单角的三角函数的关系的需要 在此 基础上 再一般化而提出本节的研究课题进入新课 思路思路 2 2 复习导入 我们在初中时就知道 cos45 cos30 由此我们能否 2 2 2 3 得到 cos15 cos 45 30 这里是不是等于 cos45 cos30 呢 教师可让学生验证 经过验 证可知 我们的猜想是错误的 那么究竟是个什么关系呢 cos 等于什么呢 这时学生 急于知道答案 由此展开新课 我们就一起来探讨 两角差的余弦公式 这是全章公式的基础 推进新课推进新课 新知探究新知探究 提出问题提出问题 请学生猜想 cos 利用前面学过的单位圆上的三角函数线 如何用 的三角函数来表示 cos 呢 利用向量的知识 又能如何推导发现 cos 细心观察 C 公式的结构 它有哪些特征 其中 角的取值范围如何 如何正用 逆用 灵活运用 C 公式进行求值计算 活动活动 问题 出示问题后 教师让学生充分发挥想象能力尝试一下 大胆猜想 有的同 学可能就首先想到 cos cos cos 的结论 此时教师适当的点拨 然后让学生由特殊 角来验证它的正确性 如 60 30 则 cos cos30 而 cos cos cos60 2 3 cos30 这一反例足以说明 cos cos cos 2 31 让学生明白 要想说明猜想正确 需进行严格证明 而要想说明猜想错误 只需一个反例 即可 问题 既然 cos cos cos 那么 cos 究竟等于什么呢 由于这里涉及的 是三角函数的问题 是 这个角的余弦问题 我们能否利用单位圆上的三角函数线来探究 呢 图 1 如图 1 设角 的终边与单位圆的交点为 P1 POP1 则 POx 过点 P 作 PM 垂直于 x 轴 垂足为 M 那么 OM 就是角 的余弦线 即 OM cos 这里就是要用角 的正弦线 余弦线来表示 OM 过点 P 作 PA 垂直于 OP1 垂足为 A 过点 A 作 AB 垂直于 x 轴 垂足为 B 过 点 P 作 PC 垂直于 AB 垂足为 C 那么 OA 表示 cos AP 表示 sin 并且 PAC P1Ox 于是 OM OB BM OB CP OAcosa APsina cos cos sin sin 所以 cos cos cos sin sin 教师引导学生进一步思考 以上的推理过程中 角 是有条件限制的 即 均为锐角 且 如果要说明此结果是否对任意角 都成立 还要做不少推 精品文档 4欢迎下载 广工作 并且这项推广工作的过程比较繁琐 由同学们课后动手试一试 图 2 问题 教师引导学生 可否利用刚学过的向量知识来探究这个问题呢 如图 2 在平面 直角坐标系 xOy 内作单位圆 O 以 Ox 为始边作角 它们的终边与单位圆 O 的交点分别为 A B 则 cos sin cos sin AOB OAOB 由向量数量积的定义有 cos cos OAOBOAOB 由向量数量积的坐标表示有 cos sin cos sin cos cos sin sin OAOB 于是 cos cos cos sin sin 我们发现 运用向量工具进行探究推导 过程相当简洁 但在向量数量积的概念中 角 必须符合条件 0 以上结论才正确 由于 都是任意角 也是任意角 因此就 是研究当 是任意角时 以上公式是否正确的问题 当 是任意角时 由诱导公式 总可 以找到一个角 0 2 使 cos cos 若 0 则 cos cos OAOB 若 2 则 2 0 且 cos 2 cos cos OAOB 由此可知 对于任意角 都有 cos cos cos sin sin C 此公式给出了任意角 的正弦 余弦值与其差角 的余弦值之间的关系 称为差 角的余弦公式 简记为 C 有了公式 C 以后 我们只要知道 cos cos sin sin 的值 就可以求得 cos 的值了 问题 教师引导学生细心观察公式 C 的结构特征 让学生自己发现公式左边是 两 角差的余弦 右边是 这两角的余弦积与正弦积的和 可让学生结合推导过程及结构特征进 行记忆 特别是运算符号 左 右 或让学生进行简单填空 如 cos A B cos 等 因此 只要知道了 sin cos sin cos 的值就可以求得 cos 的值 了 问题 对于公式的正用是比较容易的 关键在于 拆角 的技巧 而公式的逆用则需要 学生的逆向思维的灵活性 特别是变形应用 这就需要学生具有较强的观察能力和熟练的运 算技巧 如 cos75 cos45 sin75 sin45 cos 75 45 cos30 2 3 cos cos cos cos sin sin 讨论结果讨论结果 略 精品文档 5欢迎下载 应用示例应用示例 思路思路 1 1 例 1 利用差角余弦公式求 cos15 的值 活动活动 先让学生自己探究 对有困难的学生教师可点拨学生思考题目中的角 15 它可以 拆分为哪些特殊角的差 如 15 45 30 或者 15 60 45 从而就可以直接套用公式 C 计 算求值 教师不要包办 充分让学生自己独立完成 在学生的具体操作下 体会公式的结构 公 式的用法以及把未知转化为已知的数学思想方法 对于很快就完成的同学 教师鼓励其换个 角度继续探究 解解 方法一 cos15 cos 45 30 cos45 cos30 sin45 sin30 4 26 2 1 2 2 2 3 2 2 方法二 cos15 cos 60 45 cos60 cos45 sin60 sin45 2 1 4 26 2 3 2 2 2 2 点评点评 本题是指定方法求 cos15 的值 属于套用公式型的 这样可以使学生把注意力集 中到使用公式求值上 但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式 灵 活运用公式求值 本例也说明了差角余弦公式也适用于形式上不是差角 但可以拆分成两角 差的情形 至于如何拆分 让学生在应用中仔细体会 变式训练变式训练 1 不查表求 sin75 sin15 的值 解解 sin75 cos15 cos 45 30 cos45 cos30 sin45 sin30 4 26 2 1 3 2 2 3 2 2 sin15 15cos1 2 2 4 26 1 4 26 16 2628 点评点评 本题是例题的变式 比例题有一定的难度 但学生只要细心分析 利用相关的诱导公式 不难得到上面的解答方法 2 不查表求值 cos110 cos20 sin110 sin20 解解 原式 cos 110 20 cos90 0 点评点评 此题学生一看就有似曾相识而又无从下手的感觉 需要教师加以引导 让学生细心观察 再 结合公式 C 的右边的特征 逆用公式便可得到 cos 110 20 这就是公式逆用的典例 从 而培养了学生思维的灵活性 例 2 已知 sin cos 是第三象限角 求 cos 的值 5 4 2 13 5 活动活动 教师引导学生观察题目的结构特征 联想到刚刚推导的余弦公式 学生不难发现 欲求 cos 的值 必先知道 sin cos sin cos 的值 然后利用公式 C 即可求解 从 已知条件看 还少 cos 与 sin 的值 根据诱导公式不难求出 但是这里必须让学生注意利用 同角的平方和关系式时 角 所在的象限 准确判断它们的三角函数值的符号 本例可由 学生自己独立完成 精品文档 6欢迎下载 解解 由 sin 得 5 4 2 cos 5 3 5 4 1sin1 22 a 又由 cos 是第三象限角 得 13 5 sin 13 12 13 5 1cos1 22 所以 cos cos cos sin sin 65 33 13 12 5 4 13 5 5 3 点评点评 本题是直接运用公式 C 求值的基础练习 但必须思考使用公式前应作出的必要 准备 特别是运用同角三角函数平方关系式求值时 一定要弄清角的范围 准确判断三角函数 值的符号 教师可提醒学生注意这点 养成良好的学习习惯 变式训练变式训练 已知 sin 0 cos 是第三象限角 求 cos 的值 5 4 13 5 解解 当 时 且 sin 得 cos 2 5 4 5 3 5 4 1sin1 22 a 又由 cos 是第三象限角 得 13 5 sin 22 13 5 1cos1 13 12 所以 cos cos cos sin sin 65 33 13 12 5 4 13 5 5 3 当 0 时 且 sin 得 2 5 4 cos 5 3 5 4 1sin1 22 a 又由 cos 是第三象限角 得 13 5 sin 13 12 13 5 1cos1 22 所以 cos cos cos sin sin 65 63 13 12 5 4 13 5 5 3 点评点评 本题与例 2 的显著的不同点就是角 的范围不同 由于 0 这样 cos 的符 精品文档 7欢迎下载 号可正 可负 需讨论 教师引导学生运用分类讨论的思想 对角 进行分类讨论 从而培养 学生思维的严密性和逻辑的条理性 教师强调分类时要不重不漏 思路思路 2 2 例 1 计算 1 cos 15 2 cos15 cos105 sin15 sin105 3 sinxsin x y cosxcos x y 活动活动 教师可以大胆放给学生自己探究 点拨学生分析题目中的角 15 思考它可以拆分 为哪些特殊角的差 如 15 15 30 或 15 45 60 然后套用公式求值即可 也可化 cos 15 cos15 再求值 让学生细心观察 2 3 可知 其形式与公式 C 的右边一致 从而化为 特殊角的余弦函数 解解 1 原式 cos15 cos 45 30 cos45 cos30 sin45 sin30 4 26 2 1 2 2 2 3 2 2 2 原式 cos 15 105 cos 90 cos90 0 3 原式 cos x x y cos y cosy 点评点评 本例重点是训练学生灵活运用两角差的余弦公式进行计算求值 从不同角度培养 学生正用 逆用 变形用公式解决问题的能力 为后面公式的学习打下牢固的基础 例 2 已知 cos cos 且 0 求 cos 的值 7 1 14 11 2 活动活动 教师引导学生观察题目中的条件与所求 让学生探究 之间的关系 也 就是寻找已知条件中的角与所求角的关系 学生通过探究 讨论不难得到 的关 系式 然后利用公式 C 求值即可 但还应提醒学生注意由 的取值范围求出 的取 值范围 这是很关键的一点 从而判断 sin 的符号进而求出 cos 解解 0 0 2 又 cos cos 7 1 14 11 sin 7 34 cos1 2 a sin 14 35 cos1 2 a 又 cos cos cos sin sin 2 1 7 34 14 35 7 1 14 11 点评点评 本题相对于例 1 难度大有提高 但是只要引导适当 学生不难得到 的 关系式 继而运用公式解决 但值得注意的是 的取值范围确定 也是很关键的 这是我们 以后解题当中常见的问题 变式训练变式训练 1 求值 cos15 sin15 精品文档 8欢迎下载 解解 原式 cos15 sin15 cos45 cos15 sin45 sin15 2 2 2 2 2 2 cos 45 15 cos30 22 2 6 2 已知 sin sin cos cos 求 cos 的值 5 3 5 4 解解 sin sin 2 2 cos cos 2 2 5 3 5 4 以上两式展开两边分别相加得 2 2cos 1 cos 2 1 点评点评 本题又是公式 C 的典型应用 解决问题的关键就是将已知中的两个和式两边平 方 从而得到公式 C 中 cos cos 和 sin sin 的值 即可求得 cos 的值 本题培养了 学生综合运用三角函数公式解决问题的能力 3 已知锐角 满足 cos tan 求 cos 5 4 3 1 解解 为锐角 且 cos 得 sin 5 4 5 3 又 0 0 2 2 2 2 又 tan 0 3 1 cos 10 3 从而 sin tan cos 10 1 cos cos cos cos sin sin 5 4 10 1 5 3 10 3 50 109 知能训练知能训练 课本本节练习 解答解答 1 1 cos coscos sinsin sin 2 2 2 精品文档 9欢迎下载 2 cos 2 cos2 cos sin2 sin cos 2 10 2 3 34 8315 4 12 5372 课堂小结课堂小结 1 先由学生自己思考 回顾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论