




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. .(A) (B)(C) (D)不可导.2. . (A)是同阶无穷小,但不是等价无穷小; (B)是等价无穷小; (C)是比高阶的无穷小; (D)是比高阶的无穷小. 3. 若,其中在区间上二阶可导且,则( ).(A)函数必在处取得极大值;(B)函数必在处取得极小值;(C)函数在处没有极值,但点为曲线的拐点;(D)函数在处没有极值,点也不是曲线的拐点。4.(A) (B)(C) (D).二、填空题(本大题有4小题,每小题4分,共16分)5. .6. .7. .8. .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数由方程确定,求以及.10.11.12. 设函数连续,且,为常数. 求并讨论在处的连续性.13. 求微分方程满足的解. 四、 解答题(本大题10分)14. 已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)15. 过坐标原点作曲线的切线,该切线与曲线及x 轴围成平面图形D.(1) 求D的面积A;(2) 求D绕直线x = e 旋转一周所得旋转体的体积V.六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数在上连续且单调递减,证明对任意的,.17. 设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示:设)一、单项选择题(本大题有4小题, 每小题4分, 共16分)1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. . 6.7. . 8.三、解答题(本大题有5小题,每小题8分,共40分)9. 解:方程两边求导 ,10. 解:11. 解:12. 解:由,知。 ,在处连续。13. 解: ,四、 解答题(本大题10分)14. 解:由已知且, 将此方程关于求导得特征方程:解出特征根:其通解为代入初始条件,得故所求曲线方程为:五、解答题(本大题10分)15. 解:(1)根据题意,先设切点为,切线方程:由于切线过原点,解出,从而切线方程为:则平面图形面积(2)三角形绕直线x = e一周所得圆锥体体积记为V1,则曲线与x轴及直线x = e所围成的图形绕直线x = e一周所得旋转体体积为V2D绕直线x = e 旋转一周所得旋转体的体积六、证明题(本大题有2小题,每小题4分,共12分)16. 证明:故有: 证毕。17.证:构造辅助函数:。其满足在上连续,在上可导。,且由题设,有,有,由积分中值定理,存在,使即综上可知.在区间上分别应用罗尔定理,知存在和,使及,即. 高等数学I 解答一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题有4小题, 每小题4分, 共16分)1. 当时,都是无穷小,则当时( D )不一定是无穷小. (A)(B) (C)(D) 2. 极限的值是( C ).(A) 1(B) e (C) (D) 3. 在处连续,则a =( D ).(A) 1 (B) 0 (C) e (D) 4. 设在点处可导,那么( A ).(A) (B) (C) (D) 二、填空题(本大题有4小题,每小题4分,共16分)5. 极限的值是 .6. 由确定函数y(x),则导函数 .7. 直线过点且与两平面都平行,则直线的方程为 .8. 求函数的单调递增区间为 (,0)和(1,+ ) .三、解答题(本大题有4小题,每小题8分,共32分)9. 计算极限.解:10. 已知:,求。解: ,11. 设在a,b上连续,且,试求出。解:12. 求 解:四、解答题(本大题有4小题,每小题8分,共32分)13. 求 . 14. 求函数 的极值与拐点.解:函数的定义域(,+) 令得 x 1 = 1, x 2 = -1 x 1 = 1是极大值点,x 2 = -1是极小值点极大值,极小值令得 x 3 = 0, x 4 = , x 5 = -x(-,-)(-,0)(0, )(,+)+故拐点(-,-),(0,0)(,)15. 求由曲线与所围成的平面图形的面积. 16. 设抛物线上有两点,在弧A B上,求一点使的面积最大.解:六、证明题(本大题4分)17. 设,试证.证明:设,因此在(0,+)内递减。在(0,+)内,在(0,+)内递减,在(0,+)内,即亦即当 x0时, 。高等数学I A一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题有4小题, 每小题4分, 共16分)18. 函数 的全体连续点的集合是 ( )(A) (-,+)(B) (-,1) (1,+ )(C) (-,0) (0,+)(D) (-,0) (0,1) (1,+ )19. 设,则常数a,b的值所组成的数组(a,b)为( )(A) (1,0) (B) (0,1) (C) (1,1) (D) (1,-1)20. 设在0,1上二阶可导且,则( )(A)(B) (C) (D)21. 则( )(A) M N P(B) P N M(C) P M N(D) N M 0,故驻点为极小值点。5设f (x) = x lnx在x0处可导,且f(x0)=2,则 f (x0)= 。解:则f(x)在x=0取得(填极大值或极小值)。解:二、是否连续?是否可导?并求f(x)的导函数。解:当x0及x0F(1)=f(1)-1=0-12),并求。证:七 七 (10分)确定常数a、b,使极限存在,并求出其值。解:要使极限存在,分子与分母应是极限过程中的同阶无穷小或高阶无穷小,于是有1a+b=0,用一次罗必达法则分子仍为无穷小,有a+4b=0解出:a=-4/3 b=1/3 代入求得极限为8/3八 八 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园社团联合活动合作合同(2篇)
- 新质生产力范式
- 2025电商平台转让合同示范文本
- 医疗新质生产力绿色
- 2025融资租赁代理合同
- 2025在职员工兼职合同范本
- 2025年教师资格之幼儿保教知识与能力题库综合试卷A卷附答案
- 列强入侵与民族危机教学设计3人民版(美教案)
- 如何挖掘新质生产力
- 新质生产力党员
- 湖北省武汉市2025届高三下学期四月调研考试(二模)数学试题 含解析
- 广东省2025年普通高等学校招生全国统一考试模拟测试(英语试题及答案)(广东二模)
- 河南省许昌地区2024-2025学年七年级下学期期中素质评估道德与法治试卷(含答案)
- 家庭开销计划协议书模板
- 武汉一调数学试卷及答案
- 高二下学期《家校携手凝共识齐心协力创辉煌》家长会
- 2025年北师大版七年级数学下册计算题专项训练专题04整式的混合运算与化简求值(原卷版+解析)
- 银行保密知识培训课件
- 2025年人教版七年级下册英语全册教学设计
- 脑卒中多学科会诊制度
- 2024年大模型+RAG最佳实践报告
评论
0/150
提交评论