第二章 二次函数 习题(一)及答案.doc_第1页
第二章 二次函数 习题(一)及答案.doc_第2页
第二章 二次函数 习题(一)及答案.doc_第3页
第二章 二次函数 习题(一)及答案.doc_第4页
第二章 二次函数 习题(一)及答案.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

能力提高题(二次函数)(1)1 选择题(本大题共10小题,每小题3分,共30分)1.若二次函数的图象经过点P(2,4),则该图象必经过点( )A. (2,4) B. (2,4) C. (4,2) D. (4,2)2.如图,二次函数y=ax2=bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是() D. 3. 在二次函数的图像中,若随的增大而增大,则的取值范围是( ) A. B. C. D.4. 同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两 立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=x2+3x上的概率为() 5.若抛物线y=x22x+c与y轴的交点为(0,3),则下列说法不正确的是()A抛物线开口向上B抛物线的对称轴是x=1C当x=1时,y的最大值为4D抛物线与x轴的交点为(1,0),(3,0)6.抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x1)24,则b、c的值为()A b=2,c=6Bb=2,c=0Cb=6,c=8Db=6,c=27.若一次函数y=ax+b(a0)的图象与x轴的交点坐标为(2,0),则抛物线y=ax2+bx的对称轴为()A直线x=1B直线x=2C直线x=1D直线x=48.对于抛物线y=(x+1)2+3,下列结论:抛物线的开口向下;对称轴为直线x=1;顶点坐标为(1,3);x1时,y随x的增大而减小,其中正确结论的个数为()A1 B2 C3 D49.二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是()A B C D10.已知二次函数y=x23x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x23x+m=0的两实数根是()Ax1=1,x2=1Bx1=1,x2=2Cx1=1,x2=0D x1=1,x2=32 填空题(本大题共6小题,每小题4分,共24分)11.二次函数y=x2+1的图象的顶点坐标是 12.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=13.抛物线的最小值是 14.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式_15.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是 第16题16. 一段抛物线:yx(x3)(0x3),记为C1,它与x轴交于点O,A1;将C1绕点A1 旋转180得C2,交x 轴于点A2;将C2绕点A2旋转180得C3,交x 轴于点A3;如此进行下去,直至得C13若P(37,m)在第13段抛物线C13上,则m =_3 解答题(本部分共7题,共66分)17.(本题6分)将二次函数y=x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变)18(本题8分)已知抛物线y1=ax2+bx+c(a0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围19(本题8分)在关于x,y的二元一次方程组中(1)若a=3求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值20.(本题10分)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使ABP的面积为10,请直接写出点P的坐标21(本题10分)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,3)(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=x上,并写出平移后抛物线的解析式22(本题12分)在平面直角坐标系O中,抛物线()与轴交于点A,其对称轴与轴交于点B。(1)求点A,B的坐标;(2)设直线与直线AB关于该抛物线的对称轴对称,求直线的解析式;(3)若该抛物线在这一段位于直线的上方,并且在这一段位于直线AB的下方,求该抛物线的解析式。23(本题12分)已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如题23图,当时,该抛物线与轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.参考答案1 选择题题号12345678910答案ADAACBCCCB2 填空题11. (0,1) 12.解:抛物线y=x2+bx+cx轴只有一个交点,当x=时,y=0且b24c=0,即b2=4c又点A(m,n),B(m+6,n),点A、B关于直线x=对称,A(3,n),B(+3,n)将A点坐标代入抛物线解析式,得:n=(3)2+b(3)+c=b2+c+9b2=4c,n=4c+c+9=9故答案是:913.即,的最小值为114.此题答案不唯一,只要二次项系数大于0,经过点(0,1)即可。15.解:由图可知,AOB=45,直线OA的解析式为y=x,联立消掉y得,x22x+2k=0,=(2)2412k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,点B的坐标为(2,0),OA=2,点A的坐标为(,),交点在线段AO上;当抛物线经过点B(2,0)时,4+k=0,解得k=2,要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是2k故答案为:2k16.解析:C1:yx(x3)(0x3)C2:y(x3)(x6)(3x6)C3:y(x6)(x9)(6x9)C4:y(x9)(x12)(9x12)C13:y(x36)(x39)(36x39),当x37时,y2,所以,m2。三、解答题17、解:在抛物线y=x2+2x+3图象上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到A(1,3),再向下平移2个单位得到A(1,1);点B向左平移1个单位得到B(0,4),再向下平移2个单位得到B(0,2)设平移后的抛物线的解析式为y=x2+bx+c则点A(1,1),B(0,2)在抛物线上可得:,解得:所以平移后的抛物线的解析式为:y=x2+218.解:根据OC长为8可得一次函数中的n的值为8或8分类讨论:n=8时,易得A(6,0)如图1,抛物线经过点A、C,且与x轴交点A、B在原点的两侧,抛物线开口向下,则a0,AB=16,且A(6,0),B(10,0),而A、B关于对称轴对称,对称轴直线x=2,要使y1随着x的增大而减小,则a0,x2;(2)n=8时,易得A(6,0),如图2,抛物线过A、C两点,且与x轴交点A,B在原点两侧,抛物线开口向上,则a0,AB=16,且A(6,0),B(10,0),而A、B关于对称轴对称,对称轴直线x=2,要使y1随着x的增大而减小,且a0,x219.解:(1)a=3时,方程组为,2得,4x2y=2,+得,5x=5,解得x=1,把x=1代入得,1+2y=3,解得y=1,所以,方程组的解是;(2)方程组的两个方程相加得,3x+y=a+1,所以,S=a(3x+y)=a(a+1)=a2+a,所以,当a=时,S有最小值20解:(1)二次函数y=x2+bx+c过点A(1,0),C(0,3), 解得,二次函数的解析式为y=x2+2x3;(2)当y=0时,x2+2x3=0,解得:x1=3,x2=1;A(1,0),B(3,0),AB=4,设P(m,n),ABP的面积为10,AB|n|=10,解得:n=5,当n=5时,m2+2m3=5,解得:m=4或2,P(4,5)(2,5);当n=5时,m2+2m3=5,方程无解,故P(4,5)(2,5);21.解:(1)抛物线与x轴交于点A(1,0),B(3,0),可设抛物线解析式为y=a(x1)(x3),把C(0,3)代入得:3a=3,解得:a=1,故抛物线解析式为y=(x1)(x3),即y=x2+4x3,y=x2+4x3=(x2)2+1,顶点坐标(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=x2,平移后抛物线的顶点为(0,0)落在直线y=x上22解(1)当时,.抛物线对称轴为 (2)易得点关于对称轴的对称点为则直线经过、.没直线的解析式为则,解得直线的解析式为(3)抛物线对称轴为,抛物体在这一段与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论