通信原理(英文版).ppt_第1页
通信原理(英文版).ppt_第2页
通信原理(英文版).ppt_第3页
通信原理(英文版).ppt_第4页
通信原理(英文版).ppt_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 Chapter2Signals 2 1ClassificationofSignals2 1 1DeterministicsignalsandrandomsignalsWhatisdeterministicsignal Whatisrandomsignal 2 1 2EnergysignalsandpowersignalsSignalpower LetR 1 thenP V2 R I2R V2 I2Signalenergy LetSrepresentVorI ifSvarieswithtime thenScanberewrittenass t Hence thesignalenergyE s2 t dtEnergysignalsatisfiesAveragepower thenP 0forenergysignal Forpowersignal P 0 i e powersignalhasinfiniteduration Energysignalhasfiniteenergy butitsaveragepowerequals0 Powersignalhasfiniteaveragepower butitsenergyequalsinfinity 2 2 2Characteristicsofdeterministicsignals 2 2 1CharacteristicsinfrequencydomainFrequencyspectrumofpowersignal lets t beaperiodicpowersignal itsperiodisT0 thenwehavewhere 0 2 T0 2 f0 C jn 0 isacomplexfunction C jn 0 Cn ej nwhere Cn amplitudeofthecomponentwithfrequencynf0 n phaseofthecomponentwithfrequencynf0Fourierseriesofsignals t 3 Example2 1 Findthespectrumofaperiodicrectangularwave Solution AssumetheperiodofaperiodicrectangularwaveisT thewidthis andtheamplitudeisV thenItsfrequencyspectrumis 4 Frequencyspectrumfigure 5 Example2 2 Findthefrequencyspectrumofasinusoidalwaveafterfull waverectification Solution AssumetheexpressionofthesignalisItsfrequencyspectrum TheFourierseriesofthesignalis 6 FrequencyspectraldensityofenergysignalsLetanenergysignalbes t thenitsfrequencyspectraldensityisTheinverseFouriertransformofS istheoriginalsignal Example2 3 Findthefrequencyspectraldensityofarectangularpulse Solution LettheexpressionoftherectangularpulsebeThenitsfrequencyspectraldensityisitsFouriertransform 7 Example2 4 Findthewaveformandthefrequencyspectraldensityofasamplefunction Solution ThedefinitionofthesamplefunctionisthefrequencyspectraldensitySa t is Fromtheaboveequation weseethatSa isagatefunction Example2 5 Findtheunitimpulsefunctionanditsfrequencyspectraldensity Solution Unitimpulsefunctionisusuallycalleddfunctiond t ItsdefinitionisThefrequencyspectraldensityof t 8 d t anditsfrequencyspectraldensity Physicalmeaningof function Itisapulsewithinfiniteheight infinitesimalwidth andunitarea Sa t hasthefollowingproperty Whenk amplitude andthezero spacingofthewaveform 0 Hence 9 Characterisiticsof t t isanevenfunction t isthederivativeofunitstepfunction DifferencebetweenfrequencyspectraldensityS f ofenergysignalandfrequencyspectrumofperiodicpowersignal S f continuousspectrum C jn 0 discreteUnitofS f V Hz UnitofC jn 0 VAmplitudeofS f atafrequencypoint infinitesimal 10 Example2 6 Findthefrequencyspectraldensityofacosinusoidalwavewithinfinitelength Solution Lettheexpressionofacosinusoidalwavebef t cos 0t thenaccordingtoeq 2 2 10 F canbewrittenasReferencingeq 2 2 19 theaboveequationcanbewrittenas Introducing t theconceptoffrequencyspectraldensitycanbegeneralizedtopowersignal 11 EnergyspectraldensityLettheenergyofanenergysignals t beE thentheenergyofthesignalisdecidedbyIfitsfrequencyspectraldensityisS f thenfromParseval stheoremwehavewhere S f 2iscalledenergyspectraldensity Theaboveequationcanberewrittenas whereG f S f 2 J Hz isenergyspectraldensity PropertyofG f Sinces t isarealfunction S f 2isanevenfunction 12 PowerspectraldensityLetthetruncatedsignalofs t issT t T 2 t T 2 thenTodefinethepowerspectraldensityofthesignalas obtainthesignalpower 13 2 2 2CharacteristicsintimedomainAutocorrelationfunctionDefinitionoftheautocorrelationfunctionforenergysignal Definitionoftheautocorrelationfunctionforpowersignal Characteristics R isonlydependenton butindependentoft When 0 R ofenergysignalequalstheenergyofthesignal andR ofpowersignalequalstheaveragepowerofthesignal 14 Cross correlationfunctionDefinitionofthecross correlationfunctionforenergysignal Definitionofthecross correlationfunctionforpowersignal Characteristics 1 R12 isdependenton andindependentoft 2 Proof Letx t then 15 2 3Characteristicsofrandomsignals 2 3 1ProbabilitydistributionofrandomvariableConceptofrandomvariable IftherandomoutcomeofatrialAisexpressedbyX thenwecallXarandomvariable andletitsvaluebex Forexample thenumberofcallsreceivedwithinagivenperiodoftimeatthetelephoneexchangeisarandomvariable DistributionfunctionofrandomvariableDefinition FX x P X x Characteristics P a X b P X a P X b P a X b P X b P X a P a X b FX b FX a 16 Distributionfunctionofdiscreterandomvariable LetthevaluesofXbe x1 x2 xi xn theirprobabilitiesarerespectivelyp1 p2 pi pn thenP X x1 0 P X xn 1 P X xi P X x1 P X x2 P X xi Characteristics FX 0FX 1Ifx1 x2 thenFX x1 FX x2 monotonicincreasingfunction 17 Distributionfunctionofcontinuousrandomvariable Whenxiscontinuous fromthedefinitionofdistributionfunctionFX x P X x weknowthatFX x isacontinuousmonotonicincreasingfunction 18 2 3 2ProbabilitydensityofrandomvariableProbabilitydensityofcontinuousrandomvariablepX x DefinitionofpX x MeaningofpX x pX x isthederivativeofFX x andistheslopeofthecurveofFX x P a X b canbefoundfrompX x CharacteristicsofpX x pX x 0 19 ProbabilitydensityofdiscreterandomvariableDistributionfunctionofdiscreterandomvariablecanbewrittenas wherepi probabilityofx xiu x unitstepfunctionFindingthederivativesofthetwosidesoftheaboveequation weobtainitsprobabilitydensity Characteristics Whenx xi px x 0Whenx xi px x 20 2 4Examplesoffrequentlyusedrandomvariables RandomvariablewithnormaldistributionDefinition Probabilitydensitywhere 0 a const Probabilitydensitycurve 21 RandomvariablewithuniformdistributionDefinition probabilitydensitywherea bareconstants Probabilitydensitycurve 22 RandomvariablewithRayleighdistributionDefinition Probabilitydensitywherea 0 andisaconstant Probabilitydensitycurve 23 2 5Numericalcharacteristicsofrandomvariable 2 5 1MathematicalexpectationDefinition forcontinuouserandomvariableCharacteristics IfXandYareindependentofeachother andE X andE Y exist then 24 2 5 2VarianceDefinition whereVariancecanberewrittenas Proof Fordiscretevariable Forcontinuousvariable Characteristics D C 0D X C D X D CX C2D X D X Y D X D Y D X1 X2 Xn D X1 D X2 D Xn 25 2 5 3MomentDefinition thek thmomentofarandomvariableXisk thoriginmomentisthemomentwhena 0 k thcentralmomentisthemomentwhen Characteristics Thefirstoriginmomentisthemathematicalexpectation Thesecondcentralmomentisthevariance 26 2 6Randomprocess 2 6 1BasicconceptofrandomprocessX A t ensumbleconsistingofallpossible realizations ofaneventAX Ai t arealizationofeventA itisadeterminedtimefunctionX A tk valueofthefunctionatthegiventimetkDenoteforshort X A t X t X Ai t Xi t 27 Example receivernoiseNumericalcharacteristicsofrandomprocess Statisticalmean Variance Autocorrelationfunction 28 2 6 2StationaryrandomprocessDefinitionofstationaryrandomprocess Arandomprocesswhosestatisticalcharacteristicsisindependentofthetimeoriginiscalledastationaryrandomprocess or strictstationaryrandomprocess Definitionofgeneralizedstationaryrandomprocess Therandomprocesswhosemean varianceandautocorrelationfunctionareindependentofthetimeoriginCharacteristicsofgeneralizedstationaryrandomprocess Astrictstationaryrandomprocessmustbeageneralizedstationaryrandomprocess butageneralizedstationaryrandomprocessisnotalwaysastrictstationaryrandomprocess 29 2 6 3ErgodicitySignificanceofergodicityArealizationofastationaryrandomprocesscangothroughallstatesoftheprocess Characteristicofergodicity timeaveragemaybereplaedbystatisticalmean Forexample StatisticalmeanofergodicprocessmX AutocorrelationfunctionofergodicprocessRX Ifarandomprocesshasergodicity thenitmustbeastrictstationaryrandomprocess However astrictstationaryrandomprocessisnotalwaysergodic 30 ErgodicityofstationarycommunicationsystemIfthesignalandthenoisearebothergodic thenFirstoriginmomentmX E X t D C componentofsignalSquareoffirstoriginmomentmX2 powerofnormalizedD C componentofsignalSecondoriginmomentE X2 t normalizedaveragepowerofsignalSquarerootofsecondoriginmoment E X2 t 1 2 rootmeansquareofsignalcurrentorvoltageSecondcentralmoment X2 normalizedaveragepowerfoA C componentofsignalIfmX mX2 0 then X2 E X2 t Standarddeviation X rootmeansquareofA C componentofsignalIfmX 0 then Xisrootmeansquareofsignal 31 2 6 4AutocorrelationfunctionandpowerspectraldensityofstationaryrandomprocessCharacteristicsofautocorrelationfunction 32 CharacteristicsofpowerspectraldensityReview powerspectraldensityofdeterministicsignalSimilarly powerspectraldensityofstationaryrandomprocessequals Averagepower 33 Relationshipbetweenautocorrelationfunction powerspectraldensityFromwhere Let t t k t t thentheaboveequationcanbereducedtoHence 34 TheaboveequationdemonstratesthatPX f andR areapairofFouriertransform CharacteristicsofPX f PX f 0 andPX f isarealfunction PX f PX f i e PX f isanevenfunction Example2 7 Letabinarysignalbex t asshowninthefigure Itsamplitudeis aor a andthenumberkofitssignchangesintimeintervalTobeysPoissondistribution where isaveragenumberofsignchangesofamplitudeinunittime FinditsautocorrelationfunctionR andpowerspectraldensityP f 35 Solution Itcanbeseenfromtheabovefigure x t x t hasonlytwopossiblevalues a2or a2 Hence equationcanbereducedtoR a2 occurrenceprobabilityofa2 a2 occurrenceprobabilityof a2 where theoccurrenceprobabilitycanbecalculatedaccordingtoPoissondistributionP k Ifthenumberofsignchangesofx t isevenin second then a2occurs ifthenumberofsignchangesofx t isoddin second then a2occurs ThereforeUse insteadofTinPoissondistribution thenobtain 36 The inPoissondistributionisatimeinterval soitshouldbenonnegative Hence whenthevalueof isnegative theaboveequationshouldberewrittenasCombiningtheabovetwoequations finallyobtain TheP f canbeobtainedfromtheFouriertransformoftheR CurvesofP f andR 37 Example2 8 AssumethepowerspectraldensityP f ofarandomprocessisshownasinthefigure FinditsautocorrelationfunctionR Solution P f isknown where Curveofautocorrelationfunction 38 Example2 9 Findtheautocorrelationfunctionandthepowerspectraldensityofwhitenoise Solution WhitenoisehasuniformpowerspectraldensityPn f Pn f n0 2where n0 single sidepowerspectraldensity W Hz Theautocorrelationfunctionofwhitenoisecanbeobtainedfromitspowerspectraldensity Ascanbeseenthesamplesofwhitenoiseatanytwoadjacentinstants i e 0 areuncorrelated Averagepowerofwhitenoise Theaboveequationshowsthattheaveragepowerofwhitenoiseisinfinity 39 Powerspectraldensity autocorrelationfunctionofband limitedwhitenoisePowerspectraldensityofbandlimitedwhitenoise Ifthebandwidthofawhitenoiseinlimitedintheinterval fH fH thenwehavePn f n0 2 fH f fH 0 elseitsautocorrelationfunctinis Curves 40 2 7Gaussianprocess DefinitionOnedimensionalprobabilitydensityofGaussprocess where a E X t mean 2 E X t a 2 variance standarddeviation Gaussprocessisastationaryprocess henceitsprobabilitydensitypX x t1 isindependentoft1i e pX x t1 pX x CurveofpX x 41 StrictdefinitionofGaussianprocess Jointprobabilitydensityofarbitrarydimensionsatisfyingthefollowingcondition where ak mathematicalexpetactionofxk k standarddeviationofxk B determinantofthenormalizedcovariancematrix B jk algebraiccofactorofbjkin B bjk normalizedcovariancefunction i e 42 Characteristicsofn dimensionalGaussprocesspX x1 x2 xn t1 t2 tn isdecidedonlybyai i andbjkofeveryrandomvariables soitisageneralizedstationaryrandomprocess Ifx1 x2 xnareuncorrelatedoneanother thenwhenj k bjk 0 Now i e then dimensionaljointprobabilitydensityequalstheproductofeachonedimensionalprobabilitydensity Ifthecross correlationfunctionoftworandomvariablesequals0 thentheyareuncorrelatedtoeachother ifthetwodimensionaljointprobabilitydensityoftworandomvariablesisequaltotheproductoftheonedimensionalprobabilitydensities thenitisindependentofeachother Twouncorrelatedrandomvariablesarenotalwaysindependentofeachother andtwoindependentrandomvariablesarecertainlyuncorrelated RandomvariablesofGaussianprocessareuncorrelatedandindependentofoneanother 43 Characteristicsofprobabilitydensityofnormaldistributionp x issymmetricaltox a i e p x ismonotonicallyincreasingin a andmonotonicallydecreasingin a andreachesitsmax ata ThemaximumvalueisWhenx orx p x 0 Ifa 0 1 thenthedistributioniscalledstandardnormaldistribution 44 NormaldistributionfunctionTheintegralofnormalprobabilitydensityfunctionisdefinedasnormaldistributionfunction Itcanbeexpressedas where x probabilityintegralfunction Thisintegralisdifficulttocalculate Usuallytable lookupmethodisusedinsteadofcalculation 45 NormaldistributionexpressedbyerrorfunctionDefinitionoferrorfunction DefinitionofComplementaryerrorfunction Expressionofnormaldistribution 46 频率近似为fc 2 8Narrowbandrandomprocess 2 8 1BasicconceptofnarrowbandrandomprocessWhatdoesitmeannarrowband Assumethebandwidthofarandomprocessis f thecentralfrequencyisfc If f fc thentherandomprocessiscalledanarrowbandrandomprocess WaveformandexpressionofnarrowbandrandomprocessWaveformandspectrum 47 Expressionwhere aX t randomenvelopeofnarrowbandrandomprocess X t randomphaseofnarrowbandrandomprocess 0 angularfrequencyofsinusoidalwaveTheaboveequationcanberewrittenas where inphasecomponentofX t orthogonalcomponentofX t 48 2 8 2CharacteristicsofnarrowbandrandomprocessStatisticalcharacteristicsofXc t andXs t IfX t isastationarynarrowbandGaussianprocesswithzeromean thenXc t andXs t arealsoGaussianprocesses Xc t andXs t haveidenticalvariance andthevarianceisequaltothevarianceofX t XcandXsatthesameinstantareuncorrelatedandstatisticallyindependent StatisticalcharacteristicsofaX t and X t ProbabilitydensityofaX t Probabilitydensityof X t 49 2 9SinusoidalwaveplusnarrowbandGaussianprocess Expressionofsinusoidalwaveplusnoise where A deterministicamplitudeofsinusoidalwave 0 angularfrequencyofsinusoidalwave randomphaseofsinusoidalwaven t narrowbandGaussiannoiseProbabilitydensityoftheenvelopeofr t where 2 varianceofn t I0 zero ordermodifiedBesselfunctionpr x iscalledgeneralizedRayleighdistribution orRiciandistribution WhenA 0 pr x becomesRayleighprobabilitydensity 50 Conditionalprobabilitydensityofthephaseofr t where phaseofr t includingthephase ofsinusoidalwaveandthephaseofnoisepr conditionalprobabilitydensityofthephaseofr t undertheconditionofgiver Probabilitydensityofthephaseofr t When 0 where 51 CurvesofRiciandistributionWhenA 0 Envelope RayleighdistributionPhase UniformdistributionWhenA isverylarge Envelope normaldistributionPhase impulsefunction 52 2 10Signaltransferthroughlinearsystems 2 10 1BasicconceptoflinearsystemsCharacteristicsofthelinearsystemsdiscussedhereHaveapairofinputandapairofoutputPassiveMemorylessTime invariantCausalityLinear satisfyingsuperpositionprincipleIfwheninputisxi t outputisyi t thenwheninputistheoutputiswhere a1anda2arebotharbitraryconstants 53 Sketchoflinearsystem 54 2 10 2DeterministicsignaltransferthroughlinearsystemsTimedomainanalysismethodLeth t impulseresponseofthesystemx t inputsignalwaveformy t outputsignalwaveformthenwehave 55 FrequencydomainanalysismethodAssumeinputisaenergysignal letx t inputenergysignalH f Fouriertransformofh t X f Fouriertransformofx t y t outputsignalthenthefrequencyspectraldensityY f oftheoutputsignaly t ofthesystemis y t canbefoundfromtheinverseFouriertransformofY f 56 Assume theinputx t isaperiodicpowersignal thenwhere theoutputis Iftheinputx t isanonperiodicalpowersignal thenitwillbeprocessedasarandomsignal 57 Example2 10 ThereisaRClow passfilterasshowninFig 2 10 4 Finditsimpulseresponseandtheexpressionofitsoutputsignalwhentheinputisexponentiallyattenuated Solution Assumex t inputenergysignaly t outputenergysignalX f frequencyspectraldensityofx t Y f frequencyspectraldensityofy t thenthetransferfunctionofthecircuitis 58 Theimpulseresponseh t ofthefilter Therelationshipbetweentheoutputandtheinputofthefilter Assumetheinputx t equals thentheoutputofthefilteris 59 ConditionsofdistortionlesstransmissionThereisadistortionlesslineartransmissions

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论