高一物理匀速圆周运动专题_第1页
高一物理匀速圆周运动专题_第2页
高一物理匀速圆周运动专题_第3页
高一物理匀速圆周运动专题_第4页
高一物理匀速圆周运动专题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 匀速圆周运动专题 从现行高中知识体系来看 匀速圆周运动上承牛顿运动定律 下接万有引力 因此在 高一物理中占据极其重要的地位 同时学好这一章还将为高二的带电粒子在磁场中的运动 及高三复习中解决圆周运动的综合问题打下良好的基础 一 基础知识 1 匀速圆周运动的基本概念和公式 1 线速度大小 方向沿圆周的切线方向 时刻变化 T r t s v 2 2 角速度 恒定不变量 Tt 2 3 周期与频率 f T 1 4 向心力 总指向圆心 时刻变化 向心加速度 2 2 mr r mv F 2 2 r r v a 方向与向心力相同 5 线速度与角速度的关系为 的关系为rv v Tf 所以在 中若一个量确定 其余两个量也就确定了 而rfr T r v 2 2 Tf 还和有关 vr 2 质点做匀速圆周运动的条件 1 具有一定的速度 2 受到的合力 向心力 大小不变且方向始终与速度方向垂直 合力 向心力 与 速度始终在一个确定不变的平面内且一定指向圆心 3 向心力有关说明 向心力是一种效果力 任何一个力或者几个力的合力 或者某一个力的某个分力 只 要其效果是使物体做圆周运动的 都可以认为是向心力 做匀速圆周运动的物体 向心力 就是物体所受的合力 总是指向圆心 做变速圆周运动的物体 向心力只是物体所受合外 力在沿着半径方向上的一个分力 合外力的另一个分力沿着圆周的切线 使速度大小改变 所以向心力不一定是物体所受的合外力 二 解决圆周运动问题的步骤 1 确定研究对象 2 确定圆心 半径 向心加速度方向 3 进行受力分析 将各力分解到沿半径方向和垂直于半径方向 4 根据向心力公式 列牛顿第二定律方程求解 基本规律 径向合外力提供向心力 向合 FF 三 常见问题及处理要点 1 皮带传动问题 例 1 如图 1 所示 为一皮带传动装置 右轮的半径为 r a 是它边缘上的一点 左侧 是一轮轴 大轮的半径为 4r 小轮的半径为 2r b 点在小轮上 到小轮中心的距离为 r c 点和 d 点分别位于小轮和大轮的边缘上 若在传动过程中 皮带不打滑 则 A a 点与 b 点的线速度大小相等 2 B a 点与 b 点的角速度大小相等 C a 点与 c 点的线速度大小相等 D a 点与 d 点的向心加速度大小相等 4r d c 2r b r a r 图 1 解析 解析 皮带不打滑 故 a c 两点线速度相等 选 C c 点 b 点在同一轮轴上角速度 相等 半径不同 由 b 点与 c 点线速度不相等 故 a 与 b 线速度不等 A 错 同 rv 样可判定 a 与 c 角速度不同 即 a 与 b 角速度不同 B 错 设 a 点的线速度为 则 a 点向v 心加速度 由 所以 故 D 正 r v aa 2 rvc2 rvd4 acd vvv22 da aa 确 本题正确答案 C D 点评 点评 处理皮带问题的要点为 皮带 链条 上各点以及两轮边缘上各点的线速度大 小相等 同一轮上各点的角速度相同 2 水平面内的圆周运动 转盘 物体在转盘上随转盘一起做匀速圆周运动 物体与转盘间分无绳和有绳两种情 况 无绳时由静摩擦力提供向心力 有绳要考虑临界条件 例 1 如图 2 所示 水平转盘上放有质量为 m 的物体 当物块到转轴的距离为 r 时 连接物块和转轴的绳刚好被拉直 绳上张力为零 物体和转盘间的最大静摩擦力是其正 压力的倍 求 1 当转盘的角速度时 细绳的拉力 r g 2 1 1 T F 2 当转盘的角速度时 细绳的拉力 r g 2 3 2 2T F r O 图 2 解析 解析 设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为 则 0 解得rmmg 2 0 r g 0 1 因为 所以物体所需向心力小于物与盘间的最大摩擦力 则物 01 2 r g 与盘产生的摩擦力还未达到最大静摩擦力 细绳的拉力仍为 0 即 0 1 T F 3 2 因为 所以物体所需向心力大于物与盘间的最大静摩擦力 02 2 3 r g 则细绳将对物体施加拉力 由牛顿第二定律得 解得 2T FrmmgFT 2 22 2 2 mg FT 点评 点评 当转盘转动角速度时 物体有绳相连和无绳连接是一样的 此时物体做 0 圆周运动的向心力是由物体与圆台间的静摩擦力提供的 求出 可见 是 r g 00 物体相对圆台运动的临界值 这个最大角速度与物体的质量无关 仅取决于和 r 这 0 一结论同样适用于汽车在平路上转弯 圆锥摆 圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动 其特点是由物体 所受的重力与弹力的合力充当向心力 向心力的方向水平 也可以说是其中弹力的水平分 力提供向心力 弹力的竖直分力和重力互为平衡力 例 2 小球在半径为 R 的光滑半球内做水平面内的匀速圆周运动 试分析图 3 中的 小球与半球球心连线跟竖直方向的夹角 与线速度 v 周期 T 的关系 小球的半径 远小于 R FN G F 图 3 解析 解析 小球做匀速圆周运动的圆心在和小球等高的水平面上 不在半球的球心 向 心力 F 是重力 G 和支持力的合力 所以重力和支持力的合力方向必然水平 如图 3 所 N F 示有 2 22 4 sin sin tan T mR R mv mg 由此可得 sintangRv g R T cos 2 可见 越大 即轨迹所在平面越高 v 越大 T 越小 点评 点评 本题的分析方法和结论同样适用于火车转弯 飞机在水平面内做匀速圆周飞行 等在水平面内的匀速圆周运动的问题 共同点是由重力和弹力的合力提供向心力 向心力 方向水平 3 竖直面内的圆周运动 竖直面内圆周运动最高点处的受力特点及题型分类 图 4 G F 绳 F G 图 4 这类问题的特点是 由于机械能守恒 物体做圆周运动的速率时刻在改变 所以物体 4 在最高点处的速率最小 在最低点处的速率最大 物体在最低点处向心力向上 而重力向 下 所以弹力必然向上且大于重力 而在最高点处 向心力向下 重力也向下 所以弹力 的方向就不能确定了 要分三种情况进行讨论 1 弹力只可能向下 如绳拉球 这种情况下有 即mg R mv mgF 2 否则不能通过最高点 gRv 2 弹力只可能向上 如车过桥 在这种情况下有 mg R mv Fmg 2 否则车将离开桥面 做平抛运动 gRv 3 弹力既可能向上又可能向下 如管内转 或杆连球 环穿珠 这种情况下 速 度大小 v 可以取任意值 但可以进一步讨论 a 当时物体受到的弹力必然是向下gRv 的 当时物体受到的弹力必然是向上的 当时物体受到的弹力恰好为gRv gRv 零 b 当弹力大小时 向心力有两解 当弹力大小时 向心力mgF Fmg mgF 只有一解 当弹力时 向心力等于零 这也是物体恰能过最高点的临界mgF mgF 条件 结合牛顿定律的题型 例 3 如图 5 所示 杆长为 球的质量为 杆连球在竖直平面内绕轴 O 自由转动 lm 已知在最高点处 杆对球的弹力大小为 求这时小球的瞬时速度大小 mgF 2 1 图 5 解析 解析 小球所需向心力向下 本题中 所以弹力的方向可能向上也可mgmgF 2 1 能向下 1 若 F 向上 则 l mv Fmg 2 2 gl v 2 若 F 向下 则 l mv Fmg 2 2 3gl v 点评 点评 本题是杆连球绕轴自由转动 根据机械能守恒 还能求出小球在最低点的即时 速度 需要注意的是 若题目中说明小球在杆的带动下在竖直面内做匀速圆周运动 则运动 过程中小球的机械能不再守恒 这两类题一定要分清 例 4 如图 10 光滑的水平桌面上钉有两枚铁钉 A B 相距 长的ml1 0 0 ml1 柔软细线一端拴在 A 上 另一端拴住一个质量为 500g 的小球 小球的初始位置在 AB 连 线上 A 的一侧 把细线拉直 给小球以 2m s 的垂直细线方向的水平速度 使它做圆周运 动 由于钉子 B 的存在 使细线逐步缠在 A B 上 若细线能承受的最大拉力 NFTm7 则从开始运动到细线断裂的时间为多少 5 A B 图 10 解析 解析 小球转动时 由于细线逐步绕在 A B 两钉上 小球的转动半径逐渐变小 但 小球转动的线速度大小不变 小球交替地绕 A B 做匀速圆周运动 线速度不变 随着转动半径的减小 线中拉力 不断增大 每转半圈的时间 t 不断减小 T F 在第一个半圆内 l mv FT 2 1 v l t 1 在第二个半圆内 0 2 2 ll mv FT v ll t 0 2 在第三个半圆内 0 2 3 2ll mv FT v ll t 2 0 3 在第 n 个半圆内 0 2 1 lnl mv FTn v lnl tn 1 0 令 得 即在第 8 个半圆内线还未断 n 取 8 经历的时间为NFF TmTn 7 1 8 n sl nn nl v lnnl v tttt n 2 8 2 1 1 321 0021 6 结合能量的题型 例 4 一内壁光滑的环形细圆管 位于竖直平面内 环的半径为 R 比细管的半径大 得多 在圆管中有两个直径与细管内径相同的小球 A B 质量分别为 沿环 1 m 2 m 形管顺时针运动 经过最低点的速度都是 当 A 球运动到最低点时 B 球恰好到最高点 0 v 若要此时作用于细管的合力为零 那么 R 和应满足的关系是 1 m 2 m 0 v 解析 解析 由题意分别对 A B 小球和圆环进行受力分析如图 6 所示 对于 A 球有 R vm gmFN 2 01 11 对于 B 球有 R vm gmFN 2 2 22 根据机械能守恒定律Rgmvmvm2 2 1 2 1 2 2 2 2 02 由环的平衡条件0 1 2 NN FF 而 11NN FF 22NN FF 由以上各式解得0 5 2 02121 vmmgRmm B v FN2 m2g FN1 v0 m1g A FN2 FN1 图 6 点评 点评 圆周运动与能量问题常联系在一起 在解这类问题时 除要对物体受力分析 运用圆周运动知识外 还要正确运用能量关系 动能定理 机械能守恒定律 连接问题的题型 例 5 如图 7 所示 一根轻质细杆的两端分别固定着 A B 两个质量均为 m 的小球 O 点是一光滑水平轴 已知 使细杆从水平位置由静止开始转动 当lAO lOB2 B 球转到 O 点正下方时 它对细杆的拉力大小是多少 7 O B A 图 7 解析 解析 对 A B 两球组成的系统应用机械能守恒定律得 22 2 1 2 1 2 BA mvmvmgllmg 因 A B 两球用轻杆相连 故两球转动的角速度相等 即 l v l v BA 2 设 B 球运动到最低点时细杆对小球的拉力为 由牛顿第二定律得 T F l mv mgF B T 2 2 解以上各式得 由牛顿第三定律知 B 球对细杆的拉力大小等于 mgFT8 1 mg8 1 方向竖直向下 说明 说明 杆件模型的最显著特点是杆上各点的角速度相同 这是与后面解决双子星问题 的共同点 四 难点问题选讲 1 极值问题 例 6 如图 8 所示 用细绳一端系着的质量为的物体 A 静止在水平转盘上 kgM6 0 细绳另一端通过转盘中心的光滑小孔 O 吊着质量为的小球 B A 的重心到 O 点kgm3 0 的距离为 若 A 与转盘间的最大静摩擦力为 为使小球 B 保持静止 求转m2 0NFf2 盘绕中心 O 旋转的角速度的取值范围 取 2 10smg O B A 图 8 解析 解析 要使 B 静止 A 必须相对于转盘静止 具有与转盘相同的角速度 A 需要的 向心力由绳拉力和静摩擦力合成 角速度取最大值时 A 有离心趋势 静摩擦力指向圆心 O 角速度取最小值时 A 有向心运动的趋势 静摩擦力背离圆心 O 对于 B mgFT 对于 A 2 1 MrFF fT 2 2 MrFF fT 联立解得 srad 5 6 1 srad 9 2 2 所以sradsrad 5 6 9 2 8 点评 点评 在水平面上做圆周运动的物体 当角速度变化时 物体有远离或向着圆心运 动的 半径有变化 趋势 这时要根据物体的受力情况 判断物体受的某个力是否存在以 及这个力存在时方向朝哪 特别是一些接触力 如静摩擦力 绳的拉力等 2 微元问题 例 7 如图 9 所示 露天娱乐场空中列车是由许多完全相同的车厢组成 列车先沿光 滑水平轨道行驶 然后滑上一固定的半径为 R 的空中圆形光滑轨道 若列车全长为 l l R 远大于一节车厢的长度和高度 那么列车在运行到圆环前的速度至少要多大 R 2 才能使整个列车安全通过固定的圆环轨道 车厢间的距离不计 O R v0 图 9 解析 解析 当列车进入轨道后 动能逐渐向势能转化 车速逐渐减小 当车厢占满环时的 速度最小 设运行过程中列车的最小速度为 v 列车质量为 m 则轨道上的那部分车的质 量为 l Rm 2 由机械能守恒定律得gR l Rm mvmv 2 2 1 2 1 22 0 由圆周运动规律可知 列车的最小速率 联立解得gRv l gR gRv 2 0 4 3 数理问题 例 8 如图 10 光滑的水平桌面上钉有两枚铁钉 A B 相距 长的ml1 0 0 ml1 柔软细线一端拴在 A 上 另一端拴住一个质量为 500g 的小球 小球的初始位置在 AB 连 线上 A 的一侧 把细线拉直 给小球以 2m s 的垂直细线方向的水平速度 使它做圆周运 动 由于钉子 B 的存在 使细线逐步缠在 A B 上 若细线能承受的最大拉力 NFTm7 则从开始运动到细线断裂的时间为多少 A B 图 10 解析 解析 小球转动时 由于细线逐步绕在 A B 两钉上 小球的转动半径逐渐变小 但 小球转动的线速度大小不变 小球交替地绕 A B 做匀速圆周运动 线速度不变 随着转动半径的减小 线中拉力 不断增大 每转半圈的时间 t 不断减小 T F 在第一个半圆内 l mv FT 2 1 v l t 1 在第二个半圆内 0 2 2 ll mv FT v ll t 0 2 在第三个半圆内 0 2 3 2ll mv FT v ll t 2 0 3 在第 n 个半圆内 0 2 1 lnl mv FTn v lnl tn 1 0 9 令 得 即在第 8 个半圆内线还未断 n 取 8 经历的时间为NFF TmTn 7 1 8 n sl nn nl v lnnl v tttt n 2 8 2 1 1 321 0021 模拟试题模拟试题 1 关于互成角度 不为零度和 180 的一个匀速直线运动和一个匀变速直线运动的合 运动 下列说法正确的是 A 一定是直线运动 B 一定是曲线运动 C 可能是直线 也可能是曲线运动 D 以上答案都不对 2 一架飞机水平匀速飞行 从飞机上每隔 1s 释放一个铁球 先后释放 4 个 若不计空 气阻力 则这 4 个球 A 在空中任何时刻总是排列成抛物线 它们的落地点是等间距的 B 在空中任何时刻总是排列成抛物线 它们的落地点是不等间距的 C 在空中任何时刻总是在飞机的正下方排列成竖直直线 它们的落地点是不等间距的 D 在空中任何时刻总是在飞机的正下方排列成竖直直线 它们的落地点是等间距的 3 图 1 中所示为一皮带传动装置 右轮的半径为 r a 是它边缘上的一点 左侧是一轮轴 大轮的半径为 小轮的半径为 点在小轮上 到小轮中心的距离为 点和r4r2brc 点分别位于小轮和大轮的边缘上 若在传动过程中 皮带不打滑 则 d A a 点与 b 点的线速度大小相等 B a 点与 b 点的角速度大小相等 C a 点与 c 点的线速度大小相等 D a 点与 d 点的周期大小相等 4r c 2r b r a r d 图 1 4 在抗洪抢险中 战士驾驶摩托艇救人 假设江岸是平直的 洪水沿江向下游流去 水 流速度为 摩托艇在静水中的航速为 战士救人的地点 A 离岸边最近处 O 的距离为 1 v 2 v d 如战士想在最短时间内将人送上岸 则摩托艇登陆的地点离 O 点的距离为 A B C D 2 1 2 2 2 vv dv 0 2 1 v v d 1 2 v dv 5 火车轨道在转弯处外轨高于内轨 其高度差由转弯半径与火车速度确定 若在某转弯 处规定行驶速度为 则下列说法中正确的是 v 当以的速度通过此弯路时 火车重力与轨道面支持力的合力提供向心力v 当以的速度通过此弯路时 火车重力 轨道面支持力和外轨对轮缘弹力的合力提v 供向心力 当速度大于 v 时 轮缘挤压外轨 当速度小于 v 时 轮缘挤压外轨 A B C D 6 在做 研究平抛物体的实验 时 让小球多次沿同一轨道运动 通过描点法画小球做 10 平抛运动的轨迹 为了能较准确地描绘运动轨迹 下面列出了一些操作要求 将你认为正 确的选项前面的字母填在横线上 A 通过调节使斜槽的末端保持水平 B 每次释放小球的位置必须不同 C 每次必须由静止释放小球 D 记录小球位置用的木条 凹槽 每次必须严格地等距离下降 E 小球运动时不应与木板上的白纸 或方格纸 相接触 F 将球的位置记录在纸上后 取下纸 用直尺将点连成折线 7 试根据平抛运动原理设计测量弹射器弹丸出射初速的实验方法 根据实验器材 弹射 器 含弹丸 见图 2 所示 铁架台 带有夹具 米尺 1 在安装弹射器时应注意 2 实验中需要测量的量是 3 由于弹射器每次射出的弹丸初速不可能完全相等 在实验中应采取的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论