




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2008 年浙江省高考数学试卷 文科 年浙江省高考数学试卷 文科 参考答案与试题解析参考答案与试题解析 一 选择题 共一 选择题 共 10 小题 每小题小题 每小题 5 分 满分分 满分 50 分 分 1 5 分 2008 浙江 已知集合 A x x 0 B x 1 x 2 则 A B A x x 1 B x x 2 C x 0 x 2 D x 1 x 2 考点 并集及其运算 菁优网版权所有 分析 根据并集的求法 做出数轴 求解即可 解答 解 根据题意 作图可得 则 A B x x 1 故选 A 点评 本题考查集合的运算 要结合数轴发现集合间的关系 进而求解 2 5 分 2008 浙江 函数 y sinx cosx 2 1 的最小正周期是 A B C D 2 考点 二倍角的正弦 同角三角函数基本关系的运用 菁优网版权所有 分析 先将原函数进行化简 再求周期 解答 解 y sinx cosx 2 1 sin2x 2 故其周期为 故选 B 点评 本题主要考查正弦函数周期的求解 3 5 分 2008 浙江 已知 a b 都是实数 那么 a2 b2 是 a b 的 A 充分而不必要条件 B 必要而不充分条件 C 充分必要条件 D 既不充分也不必要条件 考点 必要条件 充分条件与充要条件的判断 菁优网版权所有 专题 常规题型 分析 首先由于 a2 b2 不能推出 a b 反之 由 a b 也不能推出 a2 b2 故 a2 b2 是 a b 的既不充分也不必要条件 解答 解 a2 b2 既不能推出 a b 反之 由 a b 也不能推出 a2 b2 a2 b2 是 a b 的既不充分也不必要条件 故选 D 点评 本小题主要考查充要条件相关知识 2 4 5 分 2008 浙江 已知 an 是等比数列 a2 2 a5 则公比 q A B 2C 2D 考点 等比数列 菁优网版权所有 专题 等差数列与等比数列 分析 根据等比数列所给的两项 写出两者的关系 第五项等于第二项与公比的三次方 的乘积 代入数字 求出公比的三次方 开方即可得到结果 解答 解 an 是等比数列 a2 2 a5 设出等比数列的公比是 q a5 a2 q3 q 故选 D 点评 本题考查等比数列的基本量之间的关系 若已知等比数列的两项 则等比数列的 所有量都可以求出 只要简单数字运算时不出错 问题可解 5 5 分 2008 浙江 已知 a 0 b 0 且 a b 2 则 A B C a2 b2 2D a2 b2 3 考点 基本不等式 菁优网版权所有 分析 ab 范围可直接由基本不等式得到 a2 b2可先将 a b 平方再利用基本不等式联 系 解答 解 由 a 0 b 0 且 a b 2 而 4 a b 2 a2 b2 2ab 2 a2 b2 a2 b2 2 故选 C 点评 本题主要考查基本不等式知识的运用 属基本题 基本不等式是沟通和与积的联 系式 和与平方和联系时 可先将和平方 6 5 分 2008 浙江 在 x 1 x 2 x 3 x 4 x 5 的展开式中 含 x4的项的系数 是 A 15B 85C 120 D 274 考点 二项式定理的应用 菁优网版权所有 分析 本题主要考查二项式定理展开式具体项系数问题 本题可通过选括号 即 5 个括 号中 4 个提供 x 其余 1 个提供常数 的思路来完成 3 解答 解 含 x4的项是由 x 1 x 2 x 3 x 4 x 5 的 5 个括号中 4 个括号出 x 仅 1 个括号出常数 展开式中含 x4的项的系数是 1 2 3 4 5 15 故选 A 点评 本题考查利用分步计数原理和分类加法原理求出特定项的系数 7 5 分 2008 浙江 在同一平面直角坐标系中 函数 x 0 2 的图象和直线的交点个数是 A 0B 1C 2D 4 考点 函数 y Asin x 的图象变换 菁优网版权所有 分析 先根据诱导公式进行化简 再由 x 的范围求出 的范围 再由正弦函数的图象可 得到答案 解答 解 原函数可化为 y cos x 0 2 x 0 2 当 x 0 2 时 0 其图象如图 与直线 y 的交点个数是 2 个 故选 C 点评 本小题主要考查三角函数图象的性质问题 8 5 分 2008 浙江 若双曲线的两个焦点到一条准线的距离之比为 3 2 则双曲线的离心率是 A 3B 5C D 考点 双曲线的定义 菁优网版权所有 专题 计算题 分析 先取双曲线的一条准线 然后根据题意列方程 整理即可 解答 解 依题意 不妨取双曲线的右准线 则左焦点 F1到右准线的距离为 4 右焦点 F2到右准线的距离为 可得 即 双曲线的离心率 故选 D 点评 本题主要考查双曲线的性质及离心率定义 9 5 分 2008 浙江 对两条不相交的空间直线 a 与 b 必存在平面 使得 A a b B a b C a b D a b 考点 空间点 线 面的位置 菁优网版权所有 专题 空间位置关系与距离 分析 对两条不相交的空间直线 a 与 b 有 a b 或 a 与 b 是异面直线 从而得出结论 解答 解 两条不相交的空间直线 a 和 b 有 a b 或 a 与 b 是异面直线 一定存在平面 使得 a b 故选 B 点评 本题主要考查立体几何中线面关系问题 属于基础题 10 5 分 2008 浙江 若 a 0 b 0 且当时 恒有 ax by 1 则以 a b 为坐 标的点 P a b 所形成的平面区域的面积是 A B C 1D 考点 简单线性规划的应用 菁优网版权所有 专题 计算题 压轴题 分析 欲求平面区域的面积 先要确定关于 a b 的约束条件 根据恒有 ax by 1 成立 a 0 b 0 确定出 ax by 的最值取到的位置从而确定关于 a b 约束条件 解答 解 a 0 b 0 t ax by 最大值在区域的右上取得 即一定在点 0 1 或 1 0 取得 故有 by 1 恒成立或 ax 1 恒成立 0 b 1 或 0 a 1 以 a b 为坐标点 P a b 所形成的平面区域是一个正方形 所以面积为 1 故选 C 5 点评 本小题主要考查线性规划的相关知识 本题主要考查了简单的线性规划 以及利 用几何意义求最值 属于基础题 二 填空题 共二 填空题 共 7 小题 每小题小题 每小题 4 分 满分分 满分 28 分 分 11 4 分 2008 浙江 已知函数 f x x2 x 2 则 f 1 2 考点 函数的概念及其构成要素 菁优网版权所有 分析 将 x 1 代入函数解析式即可求出答案 解答 解 f 1 12 1 2 1 1 2 故答案为 2 点评 本题主要考查函数解析式 求函数值问题 12 4 分 2008 浙江 若 则 cos2 考点 诱导公式的作用 二倍角的余弦 菁优网版权所有 分析 由 sin cos 及 cos2 2cos2 1 解之即可 解答 解 由可知 而 故答案为 点评 本题考查诱导公式及二倍角公式的应用 13 4 分 2008 浙江 已知 F1 F2为椭圆 1 的两个焦点 过 F1的直线交椭圆 于 A B 两点 若 F2A F2B 12 则 AB 8 考点 椭圆的简单性质 菁优网版权所有 专题 计算题 圆锥曲线的定义 性质与方程 6 分析 运用椭圆的定义 可得三角形 ABF2的周长为 4a 20 再由周长 即可得到 AB 的 长 解答 解 椭圆 1 的 a 5 由题意的定义 可得 AF1 AF2 BF1 BF2 2a 则三角形 ABF2的周长为 4a 20 若 F2A F2B 12 则 AB 20 12 8 故答案为 8 点评 本题考查椭圆的方程和定义 考查运算能力 属于基础题 14 4 分 2008 浙江 在 ABC 中 角 A B C 所对的边分别为 a b C 若 b c cosA acosC 则 cosA 考点 正弦定理的应用 两角和与差的正弦函数 菁优网版权所有 专题 计算题 分析 先根据正弦定理将边的关系转化为角的正弦值的关系 再运用两角和与差的正弦 公式化简可得到sinBcosA sinB 进而可求得 cosA 的值 解答 解 由正弦定理 知 由 b c cosA acosC 可得 sinB sinC cosA sinAcosC sinBcosA sinAcosC sinCcosA sin A C sinB cosA 故答案为 点评 本题主要考查正弦定理 两角和与差的正弦公式的应用 考查对三角函数公式的 记忆能力和综合运用能力 15 4 分 2008 浙江 如图 已知球 O 的面上四点 A B C D DA 平面 ABC AB BC DA AB BC 则球 O 的体积等于 7 考点 球的体积和表面积 球内接多面体 菁优网版权所有 专题 计算题 分析 说明 CDB 是直角三角形 ACD 是直角三角形 球的直径就是 CD 求出 CD 即可求出球的体积 解答 解 AB BC ABC 的外接圆的直径为 AC AC 由 DA 面 ABC 得 DA AC DA BC CDB 是直角三角形 ACD 是直角三角形 CD 为球的直径 CD 3 球的半径 R V球 R3 故答案为 点评 本题是基础题 考查球的内接多面体 说明三角形是直角三角形 推出 CD 是球 的直径 是本题的突破口 解题的重点所在 考查分析问题解决问题的能力 16 4 分 2008 浙江 已知 是平面内的单位向量 若向量 满足 0 则 的取值范围是 0 1 考点 平面向量数量积的运算 菁优网版权所有 专题 压轴题 分析 本小题主要考查向量的数量积及向量模的相关运算问题 由向量 满足 0 变化式子为模和夹角的形式 整理出 的表达式 根据夹角的范围得到结 果 解答 解 即 且 0 为单位向量 故答案为 0 1 点评 本题是向量数量积的运算 条件中给出两个向量的模和两向量的夹角 代入数量 积的公式运算即可 只是题目所给的向量要应用向量的性质来运算 本题是把向量的数量 积同三角函数问题结合在一起 17 4 分 2008 浙江 用 1 2 3 4 5 6 组成六位数 没有重复数字 要求任何相 邻两个数字的奇偶性不同 且 1 和 2 相邻 这样的六位数的个数是 40 用数字作答 考点 分步乘法计数原理 菁优网版权所有 专题 计算题 压轴题 8 分析 欲求可组成符合条件的六位数的个数 只须利用分步计数原理分三步计算 第一 步 先将 3 5 排列 第二步 再将 4 6 插空排列 第三步 将 1 2 放到 3 5 4 6 形 成的空中即可 解答 解析 可分三步来做这件事 第一步 先将 3 5 排列 共有 A22种排法 第二步 再将 4 6 插空排列 共有 2A22种排法 第三步 将 1 2 放到 3 5 4 6 形成的空中 共有 C51种排法 由分步乘法计数原理得共有 A22 2A22 C51 40 种 答案 40 点评 本题考查的是分步计数原理 分步计数原理 也称乘法原理 完成一件事 需要 分成 n 个步骤 做第 1 步有 m1 种不同的方法 做第 2 步有 m2 种不同的方法 做第 n 步有 mn种不同的方法 那么完成这件事共有 N m1 m2 mn种不同的方法 三 解答题 共三 解答题 共 5 小题 满分小题 满分 0 分 分 18 14 分 2008 浙江 已知数列 xn 的首项 x1 3 通项 xn 2np nq n N p q 为常 数 且 x1 x4 x5成等差数列 求 p q 的值 数列 xn 前 n 项和 Sn的公式 考点 数列递推式 等差数列的前 n 项和 等比数列的前 n 项和 等差数列的性质 菁优网版权所有 专题 计算题 综合题 分析 根据 x1 3 求得 p q 的关系 进而根据通项 xn 2np np n N p q 为常 数 且 x1 x4 x5成等差数列 建立关于 p 的方求得 p 进而求得 q 进而根据 1 中求得数列的首项和公差 利用等差数列的求和公式求得答案 解答 解 x1 3 2p q 3 又 x4 24p 4q x5 25p 5q 且 x1 x5 2x4 3 25p 5q 25p 8q 联立 求得 p 1 q 1 由 1 可知 xn 2n n Sn 2 22 2n 1 2 n 点评 本题主要考查等差数列和等比数列的基本知识 考查运算及推理能力 19 14 分 2008 浙江 一个袋中装有大小相同的黑球 白球和红球 已知袋中共有 10 个球 从中任意摸出 1 个球 得到黑球的概率是 从中任意摸出 2 个球 至少得到 1 个 白球的概率是 求 从中任意摸出 2 个球 得到的数是黑球的概率 袋中白球的个数 考点 互斥事件的概率加法公式 古典概型及其概率计算公式 菁优网版权所有 专题 计算题 9 分析 先做出袋中的黑球数 本题是一个古典概型 试验发生包含的事件是从袋中 任意摸出两个球 共有 C102种结果 满足条件的事件是得到的都是黑球 有 C42种结果 根据概率公式得到结果 根据从中任意摸出 2 个球 至少得到 1 个白球的概率是 写出从袋中任意摸出两 个球 至少得到一个白球的对立事件的概率 列出关于白球个数的方程 解方程即可 解答 解 由题意知本题是一个古典概型 从中任意摸出 1 个球 得到黑球的概率是 袋中黑球的个数为 试验发生包含的事件是从袋中任意摸出两个球 共有 C102种结果 满足条件的事件是得到的都是黑球 有 C42种结果 记 从袋中任意摸出两个球 得到的都是黑球 为事件 A 则 从中任意摸出 2 个球 至少得到 1 个白球的概率是 记 从袋中任意摸出两个球 至少得到一个白球 为事件 B 设袋中白球的个数为 x 则 得到 x 5 点评 本题主要考查排列组合 概率等基础知识 同时考查逻辑思维能力和数学应用能 力 考查对立事件的概率 考查古典概型问题 是一个综合题 20 14 分 2008 浙江 如图 矩形 ABCD 和梯形 BEFC 所在平面互相垂直 BCF CEF 90 AD 求证 AE 平面 DCF 当 AB 的长为何值时 二面角 A EF C 的大小为 60 考点 直线与平面平行的判定 与二面角有关的立体几何综合题 菁优网版权所有 专题 计算题 证明题 综合题 分析 过点 E 作 EG CF 并 CF 于 G 连接 DG 证明 AE 平行平面 DCF 内的直线 DG 即可证明 AE 平面 DCF 过点 B 作 BH EF 交 FE 的延长线于 H 连接 AH 说明 AHB 为二面角 A EF C 的 平面角 通过二面角 A EF C 的大小为 60 求出 AB 即可 10 解答 证明 过点 E 作 EG CF 并 CF 于 G 连接 DG 可得四边形 BCGE 为矩 形 又 ABCD 为矩形 所以 AD EG 从而四边形 ADGE 为平行四边形 故 AE DG 因为 AE 平面 DCF DG 平面 DCF 所以 AE 平面 DCF 解 过点 B 作 BH EF 交 FE 的延长线于 H 连接 AH 由平面 ABCD 平面 BEFG AB BC 得 AB 平面 BEFC 从而 AH EF 所以 AHB 为二面角 A EF C 的平面角 在 Rt EFG 中 因为 EG AD 又因为 CE EF 所以 CF 4 从而 BE CG 3 于是 BH BE sin BEH 因为 AB BH tan AHB 所以当 AB 时 二面角 A EF G 的大小为 60 考点 空间点 线 面位置关系 空间向量与立体几何 点评 由于理科有空间向量的知识 在解决立体几何试题时就有两套根据可以使用 这 为考生选择解题方案提供了方便 但使用空间向量的方法解决立体几何问题也有其相对的 缺陷 那就是空间向量的运算问题 空间向量有三个分坐标 在进行运算时极易出现错误 而且空间向量方法证明平行和垂直问题的优势并不明显 所以在复习立体几何时 不要纯 粹以空间向量为解题的工具 要注意综合几何法的应用 点评 本题主要考查空间线面关系 空间向量的概念与运算等基础知识 同时考查空间 想象能力和推理运算能力 21 15 分 2008 浙江 已知 a 是实数 函数 f x x2 x a 若 f 1 3 求 a 的值及曲线 y f x 在点 1 f 1 处的切线方程 求 f x 在区间 0 2 上的最大值 考点 利用导数求闭区间上函数的最值 利用导数研究曲线上某点切线方程 菁优网版权所有 专题 计算题 压轴题 分析 I 求出 f x 利用 f 1 3 得到 a 的值 然后把 a 代入 f x 中求出 f 1 得到切点 而切线的斜率等于 f 1 3 写出切线方程即可 II 令 f x 0 求出 x 的值 利用 x 的值分三个区间讨论 f x 的正负得到函数的单调 区间 根据函数的增减性得到函数的最大值 11 解答 解 I f x 3x2 2ax 因为 f 1 3 2a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 写给物业的表扬信格式范文
- 节水节能垃圾分类课件
- 2025年农业工程类招聘考试模拟题及答案
- 水利工程项目调研计划
- 2025年汽车维修工程师专业笔试预测题集
- (2025年标准)股东退股转让协议书
- (2025年标准)股东双方变更协议书
- (2025年标准)股东垫付协议书
- 2025年环境科学研究者招聘面试经验与模拟题集萃
- 2025年心理咨询师招聘笔试模拟题与答案
- 2025至2030医学混合成像系统行业产业运行态势及投资规划深度研究报告
- 2025年内蒙古交通集团考试笔试试题(含答案)
- 北师大版古诗
- GB/T 9634.8-2018铁氧体磁心表面缺陷极限导则第8部分:PQ型磁心
- GB/T 27749-2011绝缘漆耐热性试验规程电气强度法
- 金风风电Vensys变桨系统课件
- 【高校辅导员资料】高校辅导员理论与实务
- 工程项目成本核算制度
- um-joyo c2001跨平台监控防误一体化系统使用说明书
- 中央供料系统介绍
- 输液泵/微量注射泵使用技术操作考核评分标准
评论
0/150
提交评论