3-2-4环形跑道问题_题库教师版_第1页
3-2-4环形跑道问题_题库教师版_第2页
3-2-4环形跑道问题_题库教师版_第3页
3-2-4环形跑道问题_题库教师版_第4页
3-2-4环形跑道问题_题库教师版_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

题库 教师版 8 1、 掌握如下两个关系: ( 1)环形跑道问题 同一地点出发,如果是相向而行,则每合走一圈相遇一次 ( 2)环形跑道问题 同一地点出发,如果是同向而行,则每追上一圈相遇一次 2、遇见多人多次相遇、追及能够借助线段图进行分析 3、用比例解、数论等知识解环形跑道问题 本讲中的行程问题是特殊场地行程问题之一。是多人(一般至少两人)多次相遇或追及的过程 解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。 一、在做出线段图后,反复的在每一段路程上利用: 路程和 =相遇时间 速度和 路程差 =追及时间 速度差 二、解环形跑道问题的一般方法: 环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次这个等量关系往往成为我们解决问题的关键。 环线型 同一出发点 直径两端 同向:路程差 nS 对 (反向 ):路程和 nS 例 1】 一个圆形操场跑道的周长是 500 米,两个学生同时同地背向而行黄莺每分钟走 66 米,麻雀每分钟走 59 米经过几分钟才能相遇 ? 【解析】 黄莺和麻雀每分钟共行 66 59 125 (千米),那么周长跑道里有几个 125米,就需要几分钟,即5 0 0 ( 6 6 5 9 ) 5 0 0 1 2 5 4 (分钟) 知识精讲 教学目标 环形跑道问题 题库 教师版 8 【巩固】 小张和小王各以一定速度,在周长为 500米的环形跑道上跑步小王的速度是 200 米 /分 小张和小王同时从同一地点出发,反向跑步, 1 分钟后两人第一次相遇,小张的速度是多少米 /分? 小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王? 【解析】 两人相遇,也就是合起来跑了一个周长的行程小张的速度是 5 0 0 1 2 0 0 3 0 0 (米 /分) 在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是: 5 0 0 ( 3 0 0 2 0 0 ) 5 (分) 300 5 500 3 (圈) 【例 2】 (2008 年第八届 “春蕾杯 ”小学数学邀请赛决赛 )上海小学有一长 300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑 6 米,小胖每秒钟跑 4 米, (1) 小亚第一次追上小胖时两人各跑了多少米? (2) 小亚第二次追上小胖两人各跑了多少圈? 【解析】 第一次 追上时,小亚多跑了一圈,所以需要 3 0 0 ( 6 4 ) 1 5 0 秒,小亚跑了 6 150 900(米)。小胖跑了 4 150 600(米);第一次追上时,小胖跑了 2 圈,小亚跑了 3 圈,所以第二次追上时,小胖跑 4 圈,小亚跑 6 圈。 【巩固】 一条环形跑道长 400 米,甲 骑自行车每分钟骑 450 米,乙跑步每分钟 250 米,两人同时从同地同向出发,经过多少分钟两人相遇? 【解析】 4 0 0 4 5 0 2 5 0 2 ( )(分钟 ) 【巩固】 小新和正南在操场上比赛跑步,小新每分钟跑 250 米,正南每分钟跑 210 米,一圈跑道长 800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟? 【解析】 小新第一次超过正南是比正南多跑了一圈,根据 S v t差 差,可知 小新第一次超过正南需要:8 0 0 2 5 0 2 1 0 2 0 ( ) ( 分钟 ) , 第 三 次 超 过 正 南 是 比 正 南 多 跑 了 三 圈 , 需 要8 0 0 3 2 5 0 2 1 0 6 0 ( )(分钟 ) 【巩固】 幸福村小学有一条 200 米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑 6 米,晶晶每秒钟跑 4 米,问冬冬第一次追上晶晶时两人各跑了多少米,第 2 次追上晶晶时两人各跑了多少圈? 【解析】 这是一道封闭路线上的追及问题,冬冬与晶晶两人同时同地起跑,方向一致因此,当冬冬第一次追上晶晶时,他比晶晶多跑的路程恰是环形跑道的一个周长 (200 米 ),又知道了冬冬和晶晶的速度,于是,根据追及问题的基本关系就可求出追及时间以及他们各自所走的路程 冬 冬第一次追上晶晶所需要的时间: 2 0 0 6 4 1 0 0 ( ) (秒 ) 冬冬第一次追上晶晶时他所跑的路程应为: 6 100 600 (米 ) 晶晶第一次被追上时所跑的路程: 4 100 400 (米 ) 冬冬第二次追上晶晶时所跑的圈数: 6 0 0 2 2 0 0 6 ( ) (圈 ) 晶晶第 2 次被追上时所跑的圈数: 4 0 0 2 2 0 0 4 ( ) (圈 ) 【例 3】 在 300 米的环形跑道上,田奇和王强同学同时同地起跑,如果同向 而跑 2 分 30 秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少? 题库 教师版 8 【解析】 同向而跑,这实质是快追慢起跑后,由于两人速度的差异,造成两人路程上的差异,随着时间的增长,两人间的距离不断拉大,到两人相距环形跑道的半圈时,相距最大接着,两人的距离又逐渐缩小,直到快的追上慢的,此时快的比慢的多跑了一圈背向而跑即所谓的相遇问题,数量关系为:路程和 速度和 相遇时间同向而行 2 分 30 秒相遇, 2 分 30 秒 150 秒,两个人的速度和为 : 300 150=2 (米 /秒),背向而跑则半分钟即 30 秒相遇,所以两个人的速度差为:300 30=10 (米 /秒) 10 2 2 4 ( ) (米 /秒 ), 10 4 6 (米 /秒 ) 【巩固】 在 400 米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行 3 分 20 秒相遇,如果背向而行 40 秒相遇,已知甲比乙快,求甲、乙的速度各是多少? 【解析】 甲乙的速度和为: 400 40 10 (米 /秒 ),甲乙的速度差为: 400 200 2(米 /秒 ),甲的速度为:10 2 2 6 ( ) (米 /秒 ),乙的速度为: 10 2 2 4 ( ) (米 /秒 ) 【巩固】 两名运动员在湖的周围环形道上练习长跑甲每分钟跑 250 米,乙每分钟跑 200 米,两人同时同地同向出发,经过 45 分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇? 【解析】 在封闭的环形道上同向运动属追及问题,反向运动属相遇问题同地出发,其实追及路程或相隔距离就 是环形道一周的长这道题的解题关键就是先求出环形道一周的长度环形道一周的长度可根据两人同向出发, 45 分钟后甲追上乙,由追及问题,两人速度差为: 250 200 50(米 /分 ),所以路程差为: 50 45 2250 (米 ),即环形道一圈的长度为 2250 米所以反向出发的相遇时间为: 2 2 5 0 2 5 0 2 0 0 5 ( )(分钟 ) 【巩固】 (第 4 届希望杯培训题 )在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔 4 分钟相遇一次;如果两人从同处同向同时跑, 每隔 20 分钟相遇一次,已知环形跑道的长度是 1600 米,那么两人的速度分别是多少? 【解析】 两人反向沿环形跑道跑步时,每隔 4 分钟相遇一次,即两人 4 分钟共跑完一圈;当两人同向跑步时,每 20 分钟相遇一次,即其中的一人比另一人多跑一圈需要 20 分钟两人速度和为:1600 4 400 (米 /分 ),两人速度差为: 1600 20 80 (米 /分 ),所以两人速度分别为:4 0 0 8 0 2 2 4 0 ( ) (米 /分 ), 400 240 160(米 /分 ) 【例 4】 (难度等级 )两人在环形跑道上跑步 ,两人从同一地点出发,小明每秒跑 3 米,小雅每秒跑 4 米,反向而行, 45 秒后两人相遇。如果同向而行,几秒后两人再次相遇 【解析】 ( 4+3) 45=315 米 环形跑道的长(相遇问题求解) 315( 4=315 秒 (追及问题求解) 【巩固】 (难度等级 )一条环形跑道长 400 米,小青每分钟跑 260 米,小兰每分钟跑 210 米,两人同时出发,经过多少分钟两人相遇 【解析】 小青每分钟比小兰多跑 50 米一圈是 400 米 400/50=8 所以跑 8 分钟 【巩固】 甲、乙两人从 400 米的环形跑道上一点 A 背 向同时出发, 8 分钟后两人第五次相遇,已知每秒钟甲比乙多走 ,那么两人第五次相遇的地点与点 A 沿跑道上的最短路程是多少米 ? 【解析】 176 题库 教师版 8 【例 5】 (难度等级 )周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走 55 米,周老师每分钟走 65 米。已知林荫道周长是 480 米,他们从同一地点同时背向而行。在他们第 10 次相遇后,王老师再走 米就回到出发点。 【解析】 两人每共走 1 圈相遇 1 次,用时 480(55+60)=4(分 ), 到第 10 次相遇共用 40 分钟,王老师共走了 。 5540=2200(米),要走到出发点还需走 , 480500(米) 【例 6】 (难度等级 )在 400 米的环行跑道上, A, B 两点相距 100 米。甲、乙两人分别从 A,B 两点同时出发,按逆时针方向跑步。甲甲每秒跑 5 米,乙每秒跑 4 米,每人每跑 100 米,都要停 10 秒钟。那么甲追上乙需要时间是多少秒? 【解析】 甲实际跑 100/( 5=100(秒)时追上乙,甲跑 100/5=20(秒),休息 10 秒; 乙跑 100/4=25(秒),休息 10 秒,甲实际跑 100 秒时,已经休息 4 次,刚跑完第 5 次,共用 140 秒; 这时乙实际跑了 100 秒,第 4 次休息结束。正好追上。 【例 7】 在环形跑道上,两人都按顺时针方向跑时,每 12 分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔 4 分钟相遇一次,问两人跑一圈各需要几分钟? 【解析】 由题意可知,两人的速度和为 14,速度差为 112可得两人速度分别为 1 1 124 1 2 6 和 1 1 124 1 2 1 2 所以两人跑一圈分别需要 6 分钟和 12 分钟 【例 8】 (难度等级 )有甲、乙、丙 3 人 ,甲每分钟行走 120 米 ,乙每分钟行走 100 米 ,丙每分钟行走 70 米 个人同时同向 ,从同地出发 ,沿周长是 300 米的圆形跑道行走 ,那么多少分钟之后 ,3 人又可以相聚在跑道上同一处 ? 【解析】 由题意知道:甲走完一周需要时间为 300120=52(分);乙走完一周需要时间为 300100=3(分)丙走完一周需要时间为 300700= 307,那么三个人想再次相聚在跑道同一处需要时间为: 5 , 3 0 , 35 3 0 3 0, , 3 3 02 7 2 , 7 , 1 1 【例 9】 (难度等级 )甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行 0 分钟,如果在出发后 45 分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟 ? 【解析】 甲行走 45 分钟,再行走 70 45=25 分钟即可走完一圈 5 分钟,乙行走 45 分钟也能走完一圈 5 分钟的路程相当于乙行走 45 分钟的路程甲行走一圈需 70 分钟,所以乙需 702545=126 分钟即乙走一圈的时间是 126 分钟 【例 10】 (难度等级 )林琳在 450 米长的环形跑道上跑 一圈,已知她前一半时间每秒跑 5 米,后一半 题库 教师版 8 时间每秒跑 4 米,那么她的后一半路程跑了多少秒? 【解析】 设总时间为 X,则前一半的时间为 X/2,后一半时间同样为 X/2 X/2*5+X/2*4=450 X=100 总共跑了 100 秒 前 50 秒每秒跑 5 米,跑了 250 米 后 50 秒每秒跑 4 米,跑了 200 米 后一半的路程为 4502=225 米 后一半的路程用的时间为( 2505+50=55 秒 【巩固】 某人在 360 米的环形跑道上跑了一圈,已知他前一半时间每秒跑 5 米,后一半时间每秒跑 4 米,则他后一半路程跑了多少秒? 【解析】 44 【例 11】 (难度等 级 )甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时 米, 乙速度是每小时 米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过 5 分钟,乙与丙相遇。那么绕湖一周的行程是多少? 【解析】 30 分钟乙落后甲( 2 米),有题意之乙和丙走这 米用了 5 分钟,因为乙和丙从出发到相遇共用 35 分钟,所以绕湖一周的行程为: 355米)。 【例 12】 (难度等级 ) 甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了 100 米以后,他们第一次相遇,在甲走完一周前 60 米处又第二次相遇。求此圆形场地的周长? 【解析】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完 12圈的路程,当甲、乙第二次相遇时,甲乙共走完 1+12 32圈的路程所以从开始到第一、二次相遇所需的时间比为 1: 3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的 3 倍,即 1003=300 米有甲、乙第二次 相遇时,共行走 (1 圈 60)+300,为 32圈,所以此圆形场地的周长为 480 米 【巩固】 如图, A、 B 是圆的直径的两端,小张在 A 点,小王在 B 点同时出发反向行走,他们在 C 点第一次相遇, C 离 A 点 80 米;在 D 点第二次相遇, D 点离 B 点 6O 米 题库 教师版 8 【解析】 第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈从出发开始算,两个人合起来走了一周半因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的 3 倍,那么从 A 到 D 的距离,应该是从 A 到 C 距离的 3 倍,即 A 到 D 是 80 3 240 (米 ) 240 60 180 (米 ) 180 2 360 (米 ) 【巩固】 如图,有一个圆,两只小虫分别从直径的 两端 A 与 C 同时出发,绕圆周相 向而行它们第一次 相遇在离 A 点 8 厘米处的 B 点,第二次相遇在离 C 点处 6 厘米的 D 点,问,这个圆周的长是多少 ? 第一次相遇第二次相遇 析】 如图所示,第一次相遇,两只小虫共爬行了半个圆周,其中从 A 点出发的小虫爬了 8 厘米,第二次相遇,两只小虫又爬了一个圆周,所以两只小虫从出发共爬行了 1 个半圆周,其中从 A 点出发的应爬行 8 3 24 (厘米 ),比半个圆周多 6 厘米,半个圆周长为 8 3 6 18 (厘米 ),一个圆周长就是: (8 3 6 ) 2 3 6 (厘米 ) 【巩固】 A、 B 是圆的直径的两端,甲在 A 点,乙在 B 点同时出发反向而行,两人在 C 点第一次相遇,在 D 点第二次相遇已知 C 离 A 有 75 米, D 离 B 有 55 米,求这个圆的周长是多少米? 【解析】 340 【例 13】 (难度等级 )两辆电动小汽车在周长为 360 米的圆形道上不断行驶,甲车每分行驶 20米甲、乙两车同时分别从相距 90 米的 A, B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达 B 点时,甲车过 B 点后恰好又回到 A 点此时甲车立即返回(乙车过 再过多少分与乙车相遇? 【解析】 右图中 C 表示甲、乙第一次相遇地点因为乙从 B 到 C 又返回 B 时,甲恰好转一圈回到 A,所以甲、乙第一次相遇时,甲刚好走了半圈,因此 C 点距 B 点 180 90 90(米)甲从 A 到 C 用了 18020 9(分),所以乙每分行驶 909 10(米)甲、乙第二次相遇,即分别同时从 A, 0( 20 10) 3(分) 题库 教师版 8 【巩固】 (难度等级 )周长为 400 米的圆形跑道上,有相距 100 米的 A, B 两点甲、乙两人分别从 A, B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到 A 时,乙恰好跑到 B如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米 ? 【解析】 如下图 ,记甲乙相遇点为 C 的路程时,乙跑了 路程;而当甲跑了 400 米时,乙跑了 2路程由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达 C=12400=200(米 ),也就是甲跑了 200 米时,乙跑了 100 米,所以甲的速度是乙速度的 2 倍那么甲到达 A,乙到达 B 时,甲追上乙时需比乙多跑 40000 米的路程,所以此后甲还需跑 300(22=600 米,加上开始跑的 l 圈 400 米所以甲从出发到甲追上乙时,共跑了 600+400=1000 米 【巩固】 (难度等级 )在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行, 6 分后两人相遇,再过 4 分甲到达 B 点,又过 8 分两人再次相遇 环行一周各需要多少分? 【解析】 由题意知,甲行 4 分相当于乙行 6 分 .(抓住走同一段路程时间或速度的比例关系) 从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12 8 20(分),乙需 2046 30(分) . 【例 14】 (难度等级 )( 2000 年华校入学 试题)甲、乙两车同时从同一点 A 出发,沿周长 6 千米的圆形跑道以相反的方向行驶甲车每小时行驶 65 千米,乙车每小时行驶 55 千米一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11 次相遇的地点距离有多少米? 【解析】 首先是一个相遇过程,相遇时间: 6 ( 6 5 5 5 ) 0 小时,相遇地点距离 A 点: 5 5 0 2 千米然后乙车调头,成 为追及过程,追及时间: 6 ( 6 5 5 5 ) 0 小时,乙车在此过程中走的路程: 55 3千米,即 5 圈余 3 千米,那么这时距离 A 点 3 千米甲车调头后又成为相遇过程,同样方法可计算出相遇地点距离 A 点 千米,而第 4 次相遇时两车又重新回到了 A 点,并且行驶的方向与开始相同所以,第 8 次相遇时两车肯定还是相遇在A 点,又 1 1 3 3 2所以第 11 次相遇的地点与第 3 次相遇的地点是相同的,距离 A 点是3000 米 题库 教师版 8 【巩固】 二人沿一周长 400 米的环形跑道均速前进,甲行一圈 4 分钟,乙行一圈 7 分钟,他们同时同地同向出发,甲走 10 圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。问第十五次击掌时,甲走多长时间乙走多少路程? 【解析】 1428 【例 15】 (难度等级 ) 下如右图所示,某单位沿着围墙外面的小路形成一个边长 300 米的正方形甲、乙两人分别从两个对角处沿逆时针方向同时出发如果甲每分走 90 米,乙每分走 70米,那么经过多少时间甲才能看到乙? 【解析】 甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有 300 米长,当甲追上乙一条边( 300 米)需 300( 90 70) 15(分),此时甲走了 9015300 4 5(条)边,甲、乙不在同一条边上,甲看不到乙甲再走 0 5 条边就可以看到乙了,即甲走 5 条边后可看到乙,共需 300590 1623(分钟 0,即 16 分 40 秒 【巩固】 (难度等级 )如图,一个长方形的房屋长 13 米,宽 8 米甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行 3 米,乙每秒钟行 2 米 经过多长时间甲第一次看见乙 ? 【解析】 开始时,甲在顺时针方向距乙 8+13+8=29 米因为一边最长为 13、所以最少要追至只相差 13,即至少要追上 296 米 甲追上乙 16 米所需时间为 16(316 秒,此时甲行了 316=48 米,乙行了 216=32 米 甲、乙的位置如右图所示: 显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙而甲要到达上面的边,需再跑 2 米,所需时间为 23=23秒所以经过 16+23=1623秒后甲第一次看见乙 . 【例 16】 (难度等级 )如图,在 400 米的环形跑道上, A,B 两点相距 100 米 两人分别从 A,B 两点同时出发,按逆时针方向跑步 米,乙每秒跑 4 米,每人每跑 100 米,都要停10 秒钟 题库 教师版 8 【解析】 如果甲、乙均不休息,那么甲追上乙的时间为 100(5100 秒此时甲跑了 1005=500 米,乙跑了 1004=400 米而实际上甲跑 500 米,所需的时间为 100+410=140 秒,所以 140 150 秒时甲都在逆时针距 A 点 500 处而乙跑 400 米所需的时间为 100+310=130 秒,所以 130 140 秒时乙走在逆时针距 B 点 400 处显然从开始计算 140 秒时,甲、乙在同一地点,即甲追上乙需要时间是 140 秒 【例 17】 (难度等级 )下图是 一个边长 90 米的正方形,甲、乙两人同时从 A 点出发,甲逆时针每分行 75 米,乙顺时针每分行 45 米两人第一次在 (不包括 C, D 两点)上相遇,是出发以后的第几次相遇? 【解析】 两人第一次相遇需 3 6 0 ( 7 5 4 5 ) 3 分,其间乙走了 45 3 135 (米)由此知,乙没走 135米两人相遇一次,依次可推出第 7 次在 相遇(如图,图中数字表示该点相遇的次数) 【例 18】 (难度等级 )如图, 8 时 10 分 ,有甲、乙两人以相同的速度分别从相距 60 米的 A, 方形 边走向 D 点 时 20 分到 D 点后 ,丙、丁两人立即以相同速度从 D 点出发 向 A 走去 ,8 时 24 分与乙在 E 点相遇;丁由 D 向 C 走去, 8 时 30 分在F 点被乙追上 面积为多少平方米 ? 【解析】 如下图,标出部分时刻甲、乙、丙、丁的位置 先分析甲的情况,甲 10 分钟,行走了 路程;再看乙的情况,乙的速度等于甲的速度, 乙 14 分钟行走了 60+路程,乙 20 分钟走了 60+F 的路程 所以乙 10 分钟走了 (60+F)-(60+路程 有 6 0 6 01 0 1 4 1 0A D A E D F,有 607 5 6 0A D D E D A E 然后分析丙的情况 ,丙 4 分钟 ,行了走 路程 ,再看丁的情况 , 题库 教师版 0 8 丁的速度等于丙的速度 ,丁 10 分钟行走了 距离 有4 10F,即 52 联立 607 5 6 052A D A E E D D E D A D F ,解得 871845 于是 ,得到如下的位置关系: A B C 16 0 ( 8 7 + 1 8 ) 6 0 8 7 1 8 4 5 1 5 ( 8 7 + 1 8 )2 2 2= 2 4 9 7 . 5B E F A B E E D F F C S S S 四 边 形二、环 形跑道 变道问题 【例 19】 如图是一个跑道的示意图,沿 一圈是 400 米,沿 一圈是 275 米,其中 的直线距离是 75米甲、乙二人同时从 A 点出发练习长 跑,甲沿 小圈跑,每100米用 24 秒,乙沿 大圈跑,每 100米用 21秒,问: 乙跑第几圈时第一次与甲相遇? 发多长时间甲、乙再次在 A 相遇? 析】 因为甲、乙沿不同的路线,所以并不是谁多跑一圈,就一定有 一次超过超过只可能发生在他们共同经过的路线上,也就是 甲跑半圈 时 48 秒,乙跑半圈 时 42 秒也就是说如果某次乙经过 A 点的时间比甲晚不超过 6 秒,他就能在这半圈上追上甲 甲跑一圈用 的时间为 2 7 5 1 0 0 2 4 6 6 秒,乙跑一圈用的时间为 4 0 0 1 0 0 2 1 8 4 秒,下面看甲、乙经过 A 点的时间序列表(单位:秒) 甲 0 66 132 198 264 330 乙 0 84 168 252 336 可以看出 336 秒与 330 秒恰好差 6 秒,由此可知乙跑完第四圈、在跑第五圈时会第一次与甲相遇 题库 教师版 1 8 要在 A 点相遇,两人跑的必须都是整数圈,甲跑一 圈用 66 秒,乙跑一圈用 84秒,它们的最小公倍数为 66, 84 924 因此 924 秒即 15分 24 秒后,甲、乙第一次同时回到 A 点 【例 20】 如图所示,大圈是 400 米跑道,由 A 到 B 的跑道长是 200 米,直线距离是 50 米。父子俩同时从 A 点出发逆时针方向沿跑道进行长跑锻炼,儿子跑大圈,父亲每跑到 B 点便沿直线跑。父亲每 100 米用 20 秒,儿子每 100 米用 19 秒。如果他们按这样的速度跑,儿子在跑第几圈时,第一次与父亲相遇? 析】 首先我们要注意到:父亲和儿子只能在由 A 沿逆时针方向到 B 这一段跑道上相遇而且儿子比父亲跑得快,所以相遇时一定是儿子从后面追上父亲儿子跑一圈所用的时间是1 9 ( 4 0 0 1 0 0 ) 7 6 (秒),也就是说,儿子每过 76 秒到达 A 点一次同样道理,父亲每过 50秒到达 A 点一次在从 A 到 B 逆时针方向的一段跑道上,儿子要跑 1 9 ( 2 0 0 1 0 0 ) 3 8 (秒),父亲要跑 2 0 ( 2 0 0 1 0 0 ) 4 0 (秒)因此,只要在父亲到达 A 点后的 2 秒之内,儿子也到达 子就能从后面追上父亲于是,我们需要找 76 的一个整数倍(这个倍数是父子相遇时儿子跑完的圈数),它比 50 的一个整数倍大,但至多大 2换句话说,要找 76 的一个倍数,它除以50 的余数在 0 到 2 之间这试一下就可以了: 76 50 余 26, 76 2 50 余 2,正合我们的要求因此,在父子第一次相遇时,儿子已跑完 2 圈,也就是正在跑第 3 圈 【例 21】 如图 ,学校操场的 400 米跑道中套着 300 米小跑道 ,大跑道与小跑道有 200 米路程相重甲以每秒6 米的速度沿大跑道逆时针方向跑 ,乙以每秒 4米的速度沿小跑道顺时针方向跑 ,两人同时从两跑道的交点 A 处出发 ,当他们第二次在跑道上相遇时 ,甲共跑了多少米 ? 乙甲乙甲析】 根据题意可知,甲、乙只可能在 侧的半跑道上相遇易知 小跑道上 侧的路程为 100米 ,右侧的路程为 200 米 ,大跑道上 左、右两侧的路程均是 200 米我们将甲、乙的行程状况分析清楚当甲第一次到达 B 点时 ,乙还没有到达 B 点 ,所以第一次相遇一定在逆时针的 处而当乙第一次到达 B 点时,所需时间 为 200 4 50 秒 ,此时甲跑了 6 50 300 米 ,在离 B 点3 0 0 2 0 0 1 0 0米处乙跑出小跑道到达 A 点需要 100 4 25 秒 ,则甲又跑了 6 25 150 米 ,在 A 点左边 (1 0 0 1 5 0 ) 2 0 0 5 0 米处所以当甲再次到达 B 处时 ,乙还未到 B 处 ,那么甲必定能在 B 点右边某处与乙第二次相遇从乙再次到达 A 处开始计算 ,还需 ( 4 0 0 5 0 ) ( 6 4 ) 3 5 秒 , 题库 教师版 2 8 甲、乙第二次相遇 ,此时甲共跑了 5 0 2 5 3 5 1 1 0 秒所以,从开始到甲、乙第二次相遇甲共跑了 6 110 660米 【例 22】 ( 2005 年小学生数学报优秀小读者评选活动)有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长 400 厘米,短跑道长 300 厘米,且有 200 厘米的公用跑道 (如下图 )。机器人甲按逆时针方向以每秒 6 厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒 4 厘米的速度在短跑道上跑动。如果甲、乙两个机器人同时从 A 点出发,那么当两个机器人在跑道上第 3 次迎面相遇时,机器人甲距离出发点 A 点多少厘米 ? 200 200100A【解析】 第一 次在1时甲、乙共跑了 400 厘米 (见左下图 ); B 1200 200100B 1200 200100时甲、乙又共跑了 700 厘米 (见右上图 ); 同理,第三次相遇时,甲、乙又共跑了 700 厘米 那么到第三次相遇时两者共跑了 4 0 0 7 0 0 7 0 0 1 8 0 0 厘米,共用时间 1 8 0 0 ( 6 4 ) 1 8 0 (秒),甲跑了 6 180 1080 (厘米),距 A 点 4 0 0 3 1 0 8 0 1 2 0 (厘米) 【例 23】 (难度等级 )下图中有两个圆只有一个公共点 A,大圆直径 48 厘米,小圆直径 30 厘米。两只甲虫同时从 A 点出发,按箭头所指的方向以相同速度分别沿两个圆爬行。问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远? 【解析】 我们知道,大小圆只有一个公共点 (内切 ),而在圆上最远的两点为直径两端,所以当一只甲虫在A 点,另一只在过 A 的直径另一直径端点 B, 题库 教师版 3 8 所以在小圆甲虫跑了 n 圈,在大圆甲虫跑了 m 12圈;于是小圆甲虫跑了 30n,大圆甲虫跑了 48(m 12) 48m 24。因为速度相同,所以相同时内路程相同,起点相同,所以 30n 48m 24;即 5n 8m 4,有不定方城知识,解出有 n 4, m 2,所以小甲虫跑了 2 圈后,大小甲虫相距最远。 【例 24】 三个环行跑道如图排列,每个环行跑道周长为 210 厘米;甲、乙两只爬虫分别从 A 、 B 两地按箭头所示方向出发,甲爬虫绕 1、 2 号环 行跑道作 “8”字形循环运动,乙爬虫绕 3、 2 号环行跑道作 “8”字形循环运动,已知甲、乙两只爬虫的速度分别为每分钟 20 厘米和每分钟 米,甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米 ? 321 析】 根据题意,甲爬虫爬完半圈需要 2 1 0 2 2 0 5 分钟,乙爬虫爬完半圈需要 2 1 0 2 1 5 7 分钟由于甲第一次爬到 1、 2 之间要 钟,第一次爬到 2、 3 之间要 钟,乙第一次爬到 2、 3 之间要 7 分钟,所以第一次相遇的地点在 2 号环形跑道的上半圈处 由于甲第一次爬到 2、 3 之间要 钟,第二次爬到 1、 2 之间要 钟,乙第一次爬到 1、2 之间要 14 分钟,所以第二次相遇的地点在 2 号环形跑道的下半圈处 当两只爬虫都爬了 14 分钟时,甲爬虫共爬了 20 14 280 米, 2 1 0 2 2 1 0 2 8 0 3 5 (米 ),所以甲在距 1、 2 交点 35 米处,乙在 1、 2 交点上,还需要 3 5 ( 2 0 1 5 ) 1 (分钟 )相遇,所以第二次相遇时,两只爬虫爬了 14 1 15 分钟 所以甲、乙两爬虫第二次相遇时,甲爬虫爬了 20 15 300 厘米 【巩固】 一个圆周长 90 厘米, 3 个点把这个圆周分成三等分, 3 只爬虫 A , B , C 分别在这 3 个点上它们同时出发,按顺时针方向沿着圆周爬行 A 的速度是 10 厘米 /秒, B 的速度是 5 厘米 /秒, 厘米 /秒, 3 只爬虫出发后多少时间第一次到达同一位置? 【解析】 先考虑 B 与 C 这两只爬虫,什么时候能到达同一位置开始时,它们相差 30 厘米,每秒钟 B 能追上 C (5米 30 (5 3) 1 5 (秒 )因此 15 秒后 B 与 C 到达同一位置以后再要到达同一位置, B 要追上 C 一圈,也就是追上 90 厘米,需要 90 (5 3) 45 (秒 ) B 与 C 到达同一位置,出发后的秒数是 15, 60, 105, 150, 195, 再看看 A 与 B 什么时候到达同一位置第一次是出发后 30 (1 0 5) 6 (秒 ),以后再要到达同一位置是 A 追上 B 一圈需要 9 0 (1 0 5 ) 1 8 (秒 ), 到达同一位置,出发后的秒数是 6, 24, 42, 60, 78, 96, 对照两行列出的秒数,就知道出发后 60 秒 3 只爬虫到达同一位置 题库 教师版 4 8 【例 25】 如图所示,甲沿长为 400 米大圆的跑道顺时针跑步,乙则沿两个小圆八字形跑步 (图中给出跑动路线的次序: 1 2 3 4 1 如果甲、乙两人同时从 A 点出发,且甲、乙二人的速度分别是每秒 3 米和 5 米,问两人第三次相遇的时间是出发后 秒。 43 21析】 从图中可以看出,甲、乙两人只有可能在 A 、 B 两点处相遇(本题中,虽然在 B 处时两人都是顺时针,但是由于两人的跑道不同,因此在此处的相遇不能看作是追及) 从 A 到 B ,在大圆周上是半个圆周,即 200 米;在小圆周上是整个小圆圆周,也是 200 米两人的速度之比为 3:5 ,那么两人跑 200 米所用的时间之比为 5:3 设甲跑 200 米所用的时间为 5 个时间单位,则乙跑 200 米所用的时间为 3 个时间单位根据题意可知, 1 个时间单位为402 0 0 3 5 3 秒 可以看出,只有甲跑的时间是 5 个时间单位的整数倍时,甲才可能在 A 点或 B 点,而且是奇数倍时在 B 点,是偶数倍时在 A 点;乙跑的时间是 3 个时间单位的整数倍时,乙才可能在 A 点或 B 点,同样地,是奇数倍时在 B 点,是偶数倍时在 A 点 要使甲、乙在 A 、 B 两点处相遇,两人所跑的时间应当是 15 个时间 单位的整数倍(由于 3 和 5的奇偶性相同,所以只要是 15 个时间单位的整数倍甲、乙两人就能相遇),可以是 15 个时间单位、 30 个时间单位、 45 个时间单位 所以两人第三次相遇是在过了 45 个时间单位后,也就是说,出发后 40 4 5 6 0 03 秒两人第三次相遇 也可以画表如下: A B A B A B A B A B A B A B A B 甲 0 5 10 15 20 25 30 35 40 45 乙 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 从中可以看出,经过 15 个时间单位后两人同在 B 点,经过 30 个时间单位后两人同在 A 点,经过45 个时间单位后两人同在 B 点,这是两人第三 次相遇 【例 26】 如图,两个圆环形跑道,大圆环的周长为 600 米,小圆环的周长为 400 米。甲的速度为每秒 6米,乙的速度为每秒 4 米。甲、乙二人同时由 A 点起跑,方向如图所示,甲沿大圆环跑一圈,就跑上小圆环,方向不变,沿小圆环跑一圈,又跑上大圆环,方向也不变;而乙只沿小圆环跑。问:甲、乙可能相遇的位置距离 A 点的路程是多少? (路程按甲跑的计算 ) 题库 教师版 5 8 乙的方向甲的方向甲的方向【解析】 根据题意可知,甲跑的路线是 “8”字形,乙跑的路线是小圆环甲绕大圆环跑一周需要 100 秒,乙绕小圆环跑一周也需要 100 秒所以两人的第一次相遇肯定是在 A 点;而以后在小圆周上肯定还有相遇点由于两人都是周期性运动,乙的情况较为简单,如果以乙为中心,可以看出,每次乙回到 A 点,如果甲也在 A 点,则两人在 A 点相遇;如果甲不在 A 点,则此时甲相当于顺时针跑,乙则逆时针跑,这是一 个相遇问题,必定在小圆周上相遇 设乙第 m 次回到 A 点的时间为 t 秒,则 100,此时甲跑了 6 1 0 0 6 0 0米而甲一个周期为 6 0 0 4 0 0 1 0 0 0米,因此, t 时刻甲跑了 6001000 而 6 0 0 3 3 31 0 0 0 5 5 5m m m m ,其中整数部分表示甲回到 A 点,小数部分表示甲又从 A 点跑了一部分路程,但是不到一个周期,这一部分路程的长度是 3 10005m米由此,我们可以算出甲的位置: 3m 5k 51k 52k 53k 54k 小数部分表示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论