数理方程关于振动方程的分析matlab_第1页
数理方程关于振动方程的分析matlab_第2页
数理方程关于振动方程的分析matlab_第3页
数理方程关于振动方程的分析matlab_第4页
数理方程关于振动方程的分析matlab_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 数理方程基于 MATLAB 的问题分析报告 一 问题的提出 背景 意义 振动是指物体经过它的平衡位置所作的往复运动或某一物理量在其平衡值 附近的来回变动 而波动则是一种能量传播的方式 虽然形式不同 但是两者 的联系十分紧密 振动是波动的根源 波动是振动的传播形式 因此在分析问 题乃至实际操作中 往往是把两者放在一起分析的 首先讨论振动的各方面特 性 这样就相当于已知了波动一点上的相应特性 再对波动进行分析时 就只 2 用讨论距离的影响了 一般来说 振动只受时间影响 加上距离的参数 最终 波动就只受两个变量影响 而且也知道了它们是无关的 就可以使用分离变量 法进行求解 弦振动是波动的一类特殊形式 它在音乐物理学 材料学 地理学 物质分析 学等许多领域都得到了应用 而弦振动所属声学又是力学的一个非常独立的分 支 因此它在各领域的作用几乎是不可取代的 由于近年来的各方面硬件设施 和软件的发展 曾经停止发展很长一段时间的对弦振动的分析又开始体现出它 独特的优势 在产生音乐的过程中 琴弦的振动是很常见的一种方式 本文就将对琴弦 振动进行一定的研究 通过对弦振动方程的理解 给出不同初始条件 并分析 出琴弦不同地方产生波的特性 再用 MATLAB 做好程序 画出相应的图像 经 比较后得到琴弦的拨发与产生声音的联系 二 问题分析思路 2 1 建立偏微分方程 分析一根琴弦的振动问题 通过针对具体要分析的问题 可以列出弦振动方程 以及初始条件 L 为弦的长度 因为是两端固定的 2 0 0 0 0 0 0 0 ttxx t ua uxL t utu L t u xx u xx 弦 初始条件一定有 用分离变量法很容易求得它相应的 0 0 0utu L t 解 即弦振动的函数 2 2 对琴弦参数的求解 已知常量 T 128N 普通钢琴弦密度 根据琴弦传播速度公式 3 7 9 g cm 3 可以求得速度 v T v 2 3 求解对象 由弦振动的函数可以得到弦上不同点的振动情况 随机选取几个点 得到它们 的振动情况 并比较 2 4 作图方法 通过 MATLAB 仿真出不同点的图像 比较图像的幅值周期等参数 开始考虑 到有两种方式 一种直接通过上一个步骤求出的解使用简单的 MATLAB 命令画 出图 另一种则是通过 MATLAB 解方程后再画出相应的图像 事实上第一种 MATLAB 是做不到的 于是用第二种 2 5 仿真结果 仿真出弦振动的频谱图 即以频率和振幅为横纵坐标的图 得到不同频率与振 幅的关系 对图可以进行一系列的分析 得到相应的结果 2 6 方程解的现实意义 由于琴弦振动实际意义 我们将弦振动的实际音效也用 MATLAB 做出来了 这 样更能直观的体会到琴弦振动条件不同带来的影响 但是发出的声音不如实际 生活那么和谐美妙 缺少腔体等音乐元件 三 具体求解步骤 3 1 标准齐次弦振动的求解 如前文所提 对于这样一个标准的齐次弦振动问题 分离变量法是我们主要 所采取的解题方法 设方程具有的解的形式为 3 1 u x t T t X x 4 将变量 t 与变量 x 分离开后 代入原方程 得到 3 2 2 T Xa TX 3 3 2 TX a TX 令 3 4 2 TX a TX 此时 得到两个常微分方程 3 5 0XX 3 6 2 0Ta T 代入边界条件 得到 3 7 T t X 0 0 T t X L 0 由于不是我们需要的解 对 T t 不能恒为 0 所以对于 X x 0u x t 我们可以得到 3 8 0 0XX L 这样一来 我们可以得到常微分方程满足边界条件0Xx 的平凡解 0 0XX L 当时 原方程的边值问题就只有零解 0 当时 原方程的通解为 0 3 9 22 n 2 n L cossinX xAxBx 代入边界条件 得 3 10 0 100XAB AA 3 11 cossin0X LALBL 2 0nTa T 解得的结果为 A 0 为了使 X x 不恒为 0 应有 亦sin0BL 0B 5 即 则 sin0L 1 2 3Lnn 3 12 22 n 2 n L 相应的特征函数为 其中 Bn 为任意非零常数 对应每一 sinnn n x X xB L 个特征值方程的解是 2 0nTa T 3 13 cossinnnn n atn at T tCD LL cossinnnn n atn at T tCD LL 其中 Cn Dn 为任意常数 我们得到原方程一系列特解为 3 14 cossinsinnnnnn n atn atn x u x tT t X xCD LLL 为了求出满足的解 我们将作傅立叶拓展 把每一项全部叠加 u x t nu x t 起来 则 3 15 1 cossinsinnn n n atn atn x u x tCD LLL 为了确定系数 Cn Dn 将方程代入初始条件 得 3 16 11 0 sin 0 sinntn nn n xn an x u xxCu xxD LLL 之后即可解出 Cn Dn 3 17 0 2 sin L n n CdnN LL 3 18 0 2 sin L n n DdnN n aL 3 2 实际弦振动的求解 对于第二节一开始提出的一维实际琴弦振荡问题 我们将实际参数代入公式 中 这里 取4 025 T av 考虑到弦乐器的常见技法就是拨弦 拨弦即用手指把琴弦拨离平衡位置 使 其振动发声 这相当于在X a处把弦拉高到高度h 然后松开 使其自由振动 6 即弦振动的初始位移不为零而初速度为零 1 假设在琴弦的正中间拨弦 则a L 2 取值为434mm 拨弦高度h为 4mm 可以得到 4 0434 434 4 868 434868 434 xx x x x 0 x 那么 此时的波动方程表达式为 3 19 22 1 321 sinsincos 2 n nnn a u x txt nLL X为坐标 t为时间 如果我们取弦上三个具有代表性的点 根据琴弦的对称 性 就可以大致了解整个弦的振动情况 为此 我们不妨选取 x L 6 x L 3 x L 2三个点作为特征点 此时 分别令 x L 6 x L 3 x L 2 代入 3 19 有 3 20 1 22 1 321 sinsincos 26 n nnn a u x tt nL 3 21 2 22 1 321 sinsincos 23 n nnn a u x tt nL 3 22 3 22 1 321 sinsincos 22 n nnn a u x tt nL 2 若不是在琴弦的正中间拨弦 是在 a L 3 处拨弦 则此时的波动方程为 3 23 22 1 361 sinsincos 2 n nnn a u x txt nLL 7 仅仅是最前端系数发生变化 不影响我们对问题的研究 故仅取 a L 2 即可 3 3 琴弦特征点的图像 下面依照 3 20 3 22 的表达式作出对应的图像 当 a 取 L 6 时 8 当 a 取 L 3 时 当 a 取 L 2 时 9 3 4 琴弦特征点图像的分析 综合上面三张图可以得到 相同点 三张图都并不是想象中那种较为正常的正弦波波形 主要是因为其 函数就是 2 个 sin 和一个 cos 函数相乘得到的 仔细观察还可以得到 三张图 的周期 即频率都是一样的 这与已知到的弦振动物理驻波方面的知识相符 知道上面的直观结论后 可以进一步实验得到 在整条弦上 每一个点的振动 都是非正弦且周期的 振动过程中都有一部分极大值是相同的 不同点 1 6 弦长处的平均振幅最小 且波峰最大值持续时间长 1 2 弦 长处的的平均振幅最大 且波峰最大值持续时间短 1 3 弦长处则是处于中间 在多做实验可以进一步得到 越靠近弦端点处 振幅越小 波峰最大值持续时 间越长 声音越容易浑厚低沉 越靠近中点处振幅越大 波峰最大值持续时间 越短 声音越容易高亢嘹亮 可见幅值响应对于不同的点是不同的 3 5 琴弦振动问题的结论及现实意义 事实上 振幅越大的地方在物理意义就是此时音量比较大 综合以上分析 在拨弦的时候若拨动点越靠近中点 则产生音量越大 另一方面 对于不同拨 弦点 其频率基本是一致的 这也与实际比较吻合 因为对琴弦乐器 改变音 调 即频率 的方法就是换一根更长 或更短 的琴弦拨动 3 6 琴弦问题的反思及延伸 利用 matlab 程序 我们较好地解决了一维琴弦振动问题 但是我们并不能 满足于此 因为我们既然已经画出了这根琴弦的振动图像 相当于将该琴弦振 动情况完全模拟了出来 与此相关 我们甚至可以求出它振动的频率 找到它 的音调 再予以分析 但由于能力有限 我们找不到合适的方法来分析该琴弦 10 振动的频谱 只能止步于此 四 遇到的困难及解决方法 4 1 遇到的困难 我们本次课程设计遇到了如下困难 1 如何选择合适的题目 2 如何表示求和的表达式 3 如何实现图像的对比 4 动态图的画法 4 2 解决方法 1 对于题目的选择 我们经过多次讨论后决定对某一根琴弦振动情况进行分 析 为了更具科学性 选取不同的拨弦点 2 对求和表达式 引入 for 循环和即可解决 3 为了在不同情况中进行清楚的对比 需要对坐标轴参数进行设定 4 对于动态图 查阅资料后 用组合函数的方式予以解决 五 总结及心得体会 5 1 总结 本次通过 matlab 程序解决波动方程 我们看到了一根琴弦振动时各点的真 实情况 一来加深了我们对方程本身的认识 二来使我们看到了方程更直观 更形象的解的实际情况 实在是获益匪浅 5 2 心得体会 在完成此次报告后 我们有以下心得体会 1 提出一个好问题往往比解决问题更重要 在报告初期 我们一直在讨论 11 到底什么样的问题解决起来更为直观 更为有价值 经过反复讨论 我们决定 就研究某一根琴弦在不同的拨弦点的情况下整

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论