已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用心 爱心 专心1 椭椭 圆圆 导导学学 椭圆是我们生活中常见的一种曲线 如汽车油罐的横截面 太阳系中九大行星及其卫 星运动的轨道 部分彗星的轨道等等都是椭圆形 研究椭圆的方程及其几何性质 可以帮 助我们解决一些实际问题 椭圆是解析几何的重要内容 是高考常考的知识点之一 知识要点梳理知识要点梳理 1 椭圆的定义 平面内与两个定点 F1 F2的距离的和等于常数 大于 F1F2 的点 的轨迹叫做椭圆 这两个定点叫做椭圆的焦点 两焦点的距离叫做椭圆的焦距 问题一 对于椭园的定义我们应理解哪些内容 1 椭圆的定义是据椭圆常见 常用的作图方法而得到的 它反映了椭圆的本质属性 是建立标准方程和解决有关问题的根本依据 必须要深刻理解 建议初学的读者 利用课 本中椭圆的画法 边画边体会 理解椭圆的定义 2 在定义中要抓住关键字词 两个定点 距离的和 常数 弄清它们的确 切含义 特别注意这个常数应大于两定点的距离 F1F2 2c 即 2a 2c 当 2a 2c 时 点的轨迹是两定点确定的线段 F1F2 当 2a 2c 时 点的轨迹不存在 3 要注意利用椭圆的定义解题 与椭圆有关的一些问题 若根据题设条件 利用椭 圆的定义来解 往往起到其它方法所不及的作用 2 如何联系椭圆的标准方程理解几何性质 请读者利用类比的方法 将椭圆的两种标准方程 图形 及几何性质列一张表 然后 思考表中哪些是相同的 哪些是不同的 为什么 再认真阅读下面的说明 对标准方程及几何性质的几点说明 1 牢记参数关系 222 0 ababca b c 中最大 2 在两种标准方程表示的椭圆的几何性质中 凡是与坐标无关的性质 椭圆本身固 有的性质 都是相同的 如长轴 短轴的长 焦距 离心率 椭圆的形状 大小等都是相 同的 凡是与坐标有关的性质 由于坐标系选取的不同而得到的特殊性质 都是不同的 如焦点的坐标 顶点的坐标 标准方程 准线方程 椭圆的位置等都是不同的 记忆时 将焦点在 x 轴上方程 坐标中的 x 换成 y y 换成 x 即可 2 标准方程中的常数 a b a b 0 决定了椭圆的形状和大小 是椭圆的定形条 件 这是椭圆本身固有的性质 与坐标系的选取无关 6 椭圆的顶点是它与对称轴的交点 所以必有两个顶点与焦点在同一条直线上 椭 用心 爱心 专心2 圆的中心 焦点 短轴的端点 过这三点构成一个直角三角形 且以 c b 为直角边 a 为 斜边 这是 a b c 的一个几何意义 7 两焦点的位置决定了椭圆在坐标系中的位置 是椭圆的定位条件 与坐标系的选 取有关 当焦点在 x 轴上时 椭圆是 平卧 的 当焦点在 y 轴上时 椭圆是 直立 的 8 椭圆的焦点一定在长轴上 观察两个标准方程 不难看出 当等号右边等于 1 时 若左边 x2项的分母大于 y2项的分母 则焦点在 x 轴上 若左边 y2项的分母大于 x2项的分 母 则焦点在 y 轴上 即 焦点在 x 轴上 标准方程中 x2项的分母较大 是 a2 焦点在 y 轴上 标准方程中 y2项的分母较大 是 a2 简记为 以分母大小定长 轴 短 轴 9 求椭圆的标准方程 常采用 先定位 后定量 的方法 待定系数法 先定位 就是首先确定椭圆和坐标系的相对位置 以椭圆的中心为原点 看焦点在哪个坐标轴上 再确定标准方程的形式 后定量 就是根据已知条件 通过解方程 组 等手段 确定 a b 的值 代入所设的方程 即可求出椭圆的标准方程 如若不能确定焦点的位置 则两 种情况都要考虑 这一点一定要注意 不要遗漏 此时设所求的椭圆方程为一般形式 A x2 B y2 1 A 0 B 0 且 A B 比较简单 10 点P0 x0 y0 和椭圆 22 22 1 xy ab 的位置关系有 点 P0 x0 y0 在椭圆上 22 00 22 1 xy ab 点 P0 x0 y0 在椭圆内 22 00 22 1 xy ab 点 P0 x0 y0 在椭圆外 22 00 22 1 xy ab 椭圆的标准方程椭圆的标准方程 教学目标教学目标 根据课程标准的要求 本节教材的特点及所教学生的认知情况 把教学目标拟定如下 1 知识目标 进一步理解椭圆的定义 掌握椭圆的标准方程 理解椭圆标准方程的 推导 会根据条件写出椭圆的标准方程 能用标准方程判定是否是椭圆 2 能力目标 通过寻求椭圆的标准方程珠推导 帮助学生领会观察 分析 归纳 数形结合等思想方法的运用 在相互交流学习中 使学生养成表述 抽象 总结的思维习 惯 逐步培养学生在探索新知的过程中进行合作推理的能力 及应用代数知识进行同解变 形和化简的能力 3 情感目标 在平等的教学氛围中 让学生体验数学学习的成功与快乐 增加学生 用心 爱心 专心3 的求知欲和自信心 培养学生不怕困难 勇于探索的优良作风 增强学习审美体验 提高 学习的数学思维的情趣 给学生以成功的体验 形成学习数学知识的积极态度 重点 难点重点 难点 重点 如何确定椭圆的标准方程 难点 椭圆标准方程的推导 教学方法教学方法 启发 探索 小组讨论等 教学手段教学手段 运用多媒体 计算机等 辅助教学 教学过程教学过程 一 创设情景 情景一 复习上节课内容 重点是椭圆的定义 上节课我们已经学习了椭圆 请大家 回忆一下椭圆的定义 想一想我们是怎么画椭圆的 平面内到两个定点 12 FF 的距离的 和等于常数 大于 12 FF 的点的轨迹叫做椭圆 两个定点 12 FF 叫做椭圆的焦点 两焦点 的距离叫做椭圆的焦距 情景二 展示图片一 思索 油罐的横截面而不是椭圆 情景三 展示图片二 思索 鸟巢 顶部的椭圆型建筑如何设计 情景四 展示图片三 思索 嫦娥奔月 中卫星如何精确定位 通过研究椭圆的方程 可以帮助我们回答这些问题 目的 利用课件生动形象的演示提高学习学习兴趣 激活学生思维 使学生的注意 记忆 思维凝聚在一起 加强学生对椭圆形象的认识 提高参与程度 让学生认识到学习 椭圆的必要性 引出课题 二 互动探究 椭圆标准方程的推导 问题 1 联想必修 2 中圆方程的推导步骤是如何的 建立坐标系 设点的坐标 列等式 代坐标 化简方程 问题 2 怎样给椭圆建立直角坐标系 设椭圆的两个焦点分别为 12 FF 它们之间的距离为2c 椭圆上任意一点到 12 FF 的距离的和为2 22 aac 通过几何画板来画一个椭圆 让学生思考根据所画的椭圆 选取适当的坐标系 结合建立坐标系的一般原则 使点的坐标 几何量的表达式简单化 并且从 对 称美 简洁美 的角度出发作一定的点拨 若学生选取适当的坐标系都一样 教师多画 几个坐标系 让学生选 注意要有中心在原点 焦点在y轴的坐标系 并提问 为什么选 取这样的坐标系 依据是什么 1 建立直角坐标系 以 12 FF 所在直线为x轴 线段 12 FF的垂直平分线为y轴 x y P 1 F 2 F O 用心 爱心 专心4 建立直角坐标系xOy 2 设点的坐标 设点 P xy 是椭圆上任意一点 且椭圆的焦点坐标为 1 0 Fc 2 0 F c 3 列等式 依据椭圆的定义有 12 2PFPFa 4 将坐标代入得到 2222 2xcyxcya 目的 教学生学会建立适当的坐标系 构造数与形的桥梁 学会用解析的方法来解决 问题 渗透数形结合的数学思想 这是一个比较复杂的根式变形 化简的关键在于将根式去掉 而去根式则要两边平 方 那么怎样平方去根式会较简单呢 5 化简 通过平移 两次平方后得到 22222222 acxa yaac 为使方 程简单 对称 和谐 引入字母b 令 222 bac 可的椭圆的标准方程 22 22 1 0 xy ab ab 先让学生尝试化简 然后教师指出含有根式的化简规则 总结含有根式的化简步骤 1 方程中有一个根式时 需将根式单独留在方程的一边 把其他项移到方程的另一 边 然后两边平方 2 方程中有两个根式时 需将它们分别放在方程的两边 并使其中一边只有一项 再两边平方 三 合作交流 焦点在y轴的椭圆方程该如何推导 通过几何画板的建系 再次让学生体会 建立坐标系 设点的坐标 列等式 代坐 标 化简方程 这个推导曲线方程的过程 并能在对比中猜想出标准方程 即焦点 1 0 Fc 2 0 Fc 焦距为2c 椭圆的方程为 22 22 1 0 xy ab ab 四 数学建构 请同学们观察归纳两个方程的特征 从而区别焦点在不同坐标轴上的椭圆标准方程 令 222 bac 渗透数学对称美 简洁美教学 x y P 1 F 2 F O 用心 爱心 专心5 标准方程 22 22 1 0 xy ab ab 22 22 1 0 xy ab ba 图形 不同点 焦点坐标 1 0 Fc 2 0 F c 1 0 Fc 2 0 Fc 定义 平面内到两个定点 12 FF 的距离的和等于常数 大于 12 FF 的点的轨迹 abc 的关系 222 abc 相同点 焦点位置的判断分母哪个大 焦点就在哪个轴上 强调 是0ab 是 222 abc 是定方程 型 与曲线 形 目的 通过对比总结 强化不同类型的方程的异同 从而深化学生对椭圆标准方程的 理解 通过讨论 学生自主学习 构建新的知识体系 不但能学习到真正属于自己的 可 灵活运用的知识 而且在此过程中掌握求知的方法 通过讨论 利用类比的方法来深化学 生对椭圆标准方程的理解 五 学生活动 第一次数学练习 1 22 1 94 xy 则a b c 焦点在 轴上 焦 点坐标为 2 22 9436xy 则a b c 焦点在 轴上 焦点坐标为 目的 通过本题的练习 使学生能加深椭圆的焦点位置与标准方程之间关系的理解 同时会求出焦点坐标 焦距等基本量 求前要将方程先化成标准式 教学时采用在教师引 导下学生自主完成的方法 六 数学应用 例 1 已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆 它的焦距为 2 4m 外轮廓线上的点到两个焦点距离的和为 3m 求这个椭圆的标准方程 解 以两焦点 12 FF 所在直线为x轴 线段 12 FF的垂直平分线为y轴 建立如图所示 的直角坐标系xOy 则这个椭圆的标准方程可设为 x y P 1 F 2 F O x y P 1 F 2 F O 用心 爱心 专心6 22 22 1 0 xy ab ab 根据题意知23a 22 4c 即1 5a 1 2c 所以 22222 1 51 20 81bac 因此 这个椭圆的标准方程为 22 1 2 250 81 xy 目的 1 进一步熟悉椭圆的焦点位置与标准方程之间的关系 2 掌握运用待定系数求椭圆的标准方程 解题时强调 二定 即定位定量 3 培养学生运用知识解决问题的能力 七 学生活动 第二次练习 求适合下列条件的椭圆的标准方程 4a 15b 焦点在x轴上 4a 1c 焦点在坐标轴上 焦距为2 且过点 015 目的 熟悉巩固知识 运用知识 八 回顾反思 1 启发引导学生进行归纳整理 2 利用幻灯片展示归纳结果 3 对学生主 动学习的态度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年儿童青少年近视防控资格证考试儿童青少年近视防控倒睫处理与视力影响考核试卷
- 2025年公共交通行业智能交通控制系统分析报告
- 2025年互联网金融行业数字货币与金融科技融合研究报告及未来发展趋势预测
- 2025年航天科技行业航天器材创新技术研究报告及未来发展趋势预测
- 2025年全国交通运输行业多车型叉车维护考核试卷
- 2026年中国铁路呼和浩特局集团有限公司招聘高校毕业生1261人(二)笔试考试备考题库及答案解析
- 2025云南省小龙潭监狱招聘6人考试笔试备考题库及答案解析
- 2025安徽宿州市第四人民医院(宿马医院)(浙江大学医学院附属第一医院宿州分院)引进专业技术人才34人笔试考试备考试题及答案解析
- 2026广东能源集团校园招聘笔试考试参考试题及答案解析
- 2025年11月广东广州市天河区童睿幼儿园编外聘用制专任教师招聘1人考试笔试参考题库附答案解析
- JJF 2137-2024 表面铂电阻温度计校准规范
- 夜间施工专项施工方案
- 铲车堆场服务技术方案
- 介绍哈萨克族的课件
- 劳动教育-专题一崇尚劳动(劳动的意义)
- 浙江省杭州市杭州中学2023-2024学年九年级上学期期中科学试卷
- 新版入团志愿书表格(含申请书范本)
- 浅圆仓外立面整体环状吊篮施工工法
- 计算机考试题目及答案计算机考试选择题
- GB/T 10003-2008普通用途双向拉伸聚丙烯(BOPP)薄膜
- 陕西西北工业大学电子信息学院党务秘书公开招聘1人【共500题附答案解析】模拟检测试卷
评论
0/150
提交评论