最值_公务员考试_资格考试认证_教育专区.doc_第1页
最值_公务员考试_资格考试认证_教育专区.doc_第2页
最值_公务员考试_资格考试认证_教育专区.doc_第3页
最值_公务员考试_资格考试认证_教育专区.doc_第4页
最值_公务员考试_资格考试认证_教育专区.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学题_数学网 2013中考综合题(六季-最值问题)(共七季)1如图,已知抛物线的顶点坐标为,且与轴交于点,于轴于、两点(点在点的左边). (1)求抛物线的解析式及、两点的坐标; (2)在(1)中抛物线的对称轴上是否存在一点, 使的值最小?若存在,求的最小值;若不存在,请说明理由; (3)在以为直径的中,与相切于点,交轴于,求直线的解析式. 解:(1)由题意,设抛物线的解析式为 抛物线经过点,解得,即当时,解得,,(2)存在由(1)知,抛物线的对称轴为,因为、两点关于对称,连接交于点,则,所以,的值最小.,,的最小值为.(3)连接 是的切线 ,由题意,得,设,则在中, ., 设直线的解析式为,直线过,两点.则 解得直线的解析式为.2如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45所得直线与抛物线相交于另一点E,求证:CEQCDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由解答:解:(1)C(0,1),OD=OC,D点坐标为(1,0)设直线CD的解析式为y=kx+b(k0),将C(0,1),D(1,0)代入得:,解得:b=1,k=1,直线CD的解析式为:y=x+1(2)设抛物线的解析式为y=a(x2)2+3,将C(0,1)代入得:1=a(2)2+3,解得a=y=(x2)2+3=x2+2x+1(3)证明:由题意可知,ECD=45,OC=OD,且OCOD,OCD为等腰直角三角形,ODC=45,ECD=ODC,CEx轴,则点C、E关于对称轴(直线x=2)对称,点E的坐标为(4,1)如答图所示,设对称轴(直线x=2)与CE交于点F,则F(2,1),ME=CM=QM=2,QME与QMC均为等腰直角三角形,QEC=QCE=45又OCD为等腰直角三角形,ODC=OCD=45,QEC=QCE=ODC=OCD=45,CEQCDO(4)存在如答图所示,作点C关于直线QE的对称点C,作点C关于x轴的对称点C,连接CC,交OD于点F,交QE于点P,则PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,PCF的周长等于线段CC的长度(证明如下:不妨在线段OD上取异于点F的任一点F,在线段QE上取异于点P的任一点P,连接FC,FP,PC由轴对称的性质可知,PCF的周长=FC+FP+PC;而FC+FP+PC是点C,C之间的折线段,由两点之间线段最短可知:FC+FP+PCCC,即PCF的周长大于PCE的周长)如答图所示,连接CE,C,C关于直线QE对称,QCE为等腰直角三角形,QCE为等腰直角三角形,CEC为等腰直角三角形,点C的坐标为(4,5);C,C关于x轴对称,点C的坐标为(1,0)过点C作CNy轴于点N,则NC=4,NC=4+1+1=6,在RtCNC中,由勾股定理得:CC=综上所述,在P点和F点移动过程中,PCF的周长存在最小值,最小值为3.已知抛物线yax2bxc经过A(4,3)、B(2,0)两点,当x=3和x=3时,这条抛物线上对应点的纵坐标相等经过点C(0,2)的直线l与 x轴平行,O为坐标原点(1)求直线AB和这条抛物线的解析式;(2)以A为圆心,AO为半径的圆记为A,判断直线l与A的位置关系,并说明理由;(3)设直线AB上的点D的横坐标为1,P(m,n)是抛物线yax2bxc上的动点,当PDO的周长最小时,求四边形CODP的面积1yxO123424331234412(1)、因为y=ax+bx+c经过A(-4,3),B(2,0)两点,所以将A、B两点坐标带入到抛物线解析式可得 16a-4b+c=3 4a+2b+c=0 有当x=3和x=-3时,抛物线对应点纵坐标相等,有 9a+3b+c=9a-3b+c 联立以上三式解得 a=1/4 b=0 c=-1 所以抛物线的解析式为y=1/4x-1 过AB的直线可知斜率k=(3-0)/(-4-2)=-1/2截距等于1 所以 AB的解析式为 y=-1/2x+1(2)、圆o的直径为根号下(-4)+(3)=5 而圆心到直线l的距离为3+2=5. 即圆心到直线l的距离半径,直线l与A相切.(3)、由题意,把x=-1代入y=-1/2x+1,得y=3/2,即D(-1,3/2).由(2)中点A到原点距离跟到直线y=-2的距离相等,且当点A成为抛物线上一个动点时,仍然具有这样的性质,于是过点D作DH直线l于H,交抛物线于点P,此时易得DH是D点到l最短距离,点P坐标(-1,-3/4)此时四边形PDOC为梯形,面积为17/84.如图,抛物线 y=ax2+bx+c(a0)经过点A(3,0)、B(1,0)、C(2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与MAO相似?若存在,求点P的坐标;若不存在,请说明理由.解:由题意可知.解得.抛物线的表达式为y=.(2)将x=0代入抛物线表达式,得y=1.点M的坐标为(0,1).设直线MA的表达式为y=kx+b,则.解得k=,b=1.直线MA的表达式为y=x+1.设点D的坐标为(),则点F的坐标为().DF=.当时,DF的最大值为.此时,即点D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三角形与MAO相似.在RtMAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限. 设点P在第二象限时,点P不可能在直线MN上,只能PN=3NM,,即.解得m=3(舍去)或m=8.又3M0,故此时满足条件的点不存在. 当点P在第三象限时,点P不可能在直线MN上,只能PN=3NM,,即.解得m=3或m=8.此时点P的坐标为(8,,15). 当点P在第四象限时,若AN=3PN时,则3,即.解得m=3(舍去)或m=2.当m=2时,.此时点P的坐标为(2,).若PN=3NA,则,即.解得m=3(舍去)或m=10,此时点P的坐标为(10,,39).综上所述,满足条件的点P的坐标为(8,,15)、(2,)、(10,,39).5如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。(1)求证:CD是M的切线;(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求PDM的周长最小时点P的坐标;(3)在(2)的条件下,当PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。解:(1)连结CM,关键是OCA=OCB=90度.(2)在直角三角形OCA中,AC=3,OA5,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论