七年级数学下思维探究-有理数的运算(有答案)_第1页
七年级数学下思维探究-有理数的运算(有答案)_第2页
七年级数学下思维探究-有理数的运算(有答案)_第3页
七年级数学下思维探究-有理数的运算(有答案)_第4页
七年级数学下思维探究-有理数的运算(有答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 1 / 13七年级数学下思维探究-有理数的运算(有答案)莲山课件m 杨辉,中国南宋时期杰出的数学家,大约于世纪中叶至末叶生活在钱塘(今杭州)一带他一生著作很多,著名的数学书共种卷大家熟悉的“杨辉三角”数表就在他年所著的详解九章算术一书里记载着,他在续古摘奇算法中介绍了各种形式的“纵横图”及有关的构造方法3有理数的运算有理数及其运算是整个数与代数的基础,有关式的所有运算都是建立在数的运算基础上深刻理解有理数相关概念,掌握一定的有理数运算技能是数与代数学习的基础有理数的运算不同于算术数的运算:这是因为有理数的运算每一步要确定符号,有理数的运算很多是字母运算,也就是常说的符号演算运算能力是运算技能与推理能力的结合这就要求我们既能正确地算出结果,又善于观察问题的结构特点,选择合理的运算路径,提高运算的速度有理数运算常用的技巧与方法有:利用运算律;以符代数;恰当分组;裂项相消;分解相约;错位相减等精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 2 / 13问题解决例 1(1)已知,记, , ,则通过计算推测的表达式_ (用含的代数式表示)(2)若、是互为相反数, 、是互为倒数,的绝对值等于,则的值是_试一试对于(2) ,运用相关概念的特征解题例 2 已知整数、 、 、满足,且,那么等于() ABcD试一试解题的关键是把表示成个不同整数的积的形式例 3 计算(1) ;(2) ;(3) 试一试对于(1) ,设原式,将各括号反序相加;对于(2) ,若计算每个分母值,则易掩盖问题的实质,不妨先从考察一般情形入手;对于(3) ,视除数为一整体,从寻找被除数与除数的关系入手,例 4 在数学活动中,小明为了求的值(结果用表示) ,设计了如图所示的几何图形(1)请你用这个几何图形求的值;(2)请你用图,再设计一个能求的值的几何图形精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 3 / 13试一试求原式的值有不同的解题方法,而剖分图形面积是构造图形的关键例 5 在, ,前面任意添上正号和负号,求其非负和的最小值分析与解首先确定非负代数和的最小值的下限,然后通过构造法证明这个下限可以达到即可整数的和差仍是整数,而最小的非负整数是代数和的最小值能是吗?能是吗?由于任意添“+”号或“-”号,形式多样,因此,不可能一一尝试再作解答,从奇数、偶数的性质入手因与的奇偶性相同,故所求代数和的奇偶性与的奇偶性相同,即为奇数因此,所求非负代数和不会小于又,所求非负代数和的最小值为类比类比是一种推理方法,根据两种事物在某些特征上的相似,作出它们在其他特征上也可能相似的结论触类旁通,即用类比的方法提出问题及寻求解决问题的途径和方法例 6 观察下面的计算过程问:(1)从上面的解题方法中,你发现了什么?用字母表示这一规律精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 4 / 13(2) “学问” ,既要学会解答,又要学会发问爱因斯坦曾说:。提出问题比解决问题更重要” 请用类比的方法尽可能多地提出类似的问题分析与解(1) (2)从连续自然数到连续偶数,从个到个,从分数到整数,类比可提出下列计算问题:;数学冲浪知识技能广场1如图,每一个小方格的面积为,则可根据面积计算得到如下算式:_ (用表示,是正整数) 2某数学活动小组的位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加,第位同学报,第位同学报,第位同学报,这样得到的个数的积为_3计算:(1)_(2)_精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 5 / 134 “数学王子”高斯从小就善于观察和思考,在他读小学时就能在课堂上快速地计算出,今天我们可以将高斯的做法归纳如下:+有, 请类比以上做法,回答下列问题:若为正整数, ,则_5设,在代数式, , , , , ,中负数的个数是()ABcD6我国邮政国内外埠邮寄印刷品邮资标准如下:克以内元,每增加克(不足克按克计)元某人从成都邮寄一本书到上海,书的质量为克,则他应付邮资()元ABcD7为了求的值,可令,则,因此,所以仿照上面推理计算出的值是() ABcD8下面是按一定规律排列的一列数:第个数:;第个数:;第个数:;精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 6 / 13第个数:那么,在第个数、第个数、第个数、第个数中,最大的数是()A第个数 B第个数 c第个数 D第个数9观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图图图三个角上三个数的积三个角上三个数的和积与和的商(2)请用你发现的规律求出图中的数和图中的数10观察下列等式:第个等式:;第个等式:;第个等式:;第个等式:;精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 7 / 13请解答下列问题:(1)按以上规律列出第个等式:_=_;(2)用含的代数式表示第个等式:_=_(为正整数) ;(3)求的值思维方法天地11计算:(1)_(2)_(3)_12设三个互不相等的有理数,既可分别表示为, ,的形式,又可分别表示为, ,的形式,则_13已知,则_14已知、 、满足且,则代数式的值是_15的值是()ABcD16如果个不同的正整数、 、 、满足,那么等于()ABcDE17如果,那么的值为()ABcD不确定18观察下列各式:精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 8 / 13(1) ;(2) ;(3) ;(4) ;请你根据观察得到的规律判断下列各式正确的是()ABcD19观察下面的等式:, ;, ;, ;, (1)小明归纳上面各式得出一个猜想:“两个有理数的积等于这两个有理数的和” ,小明的猜想正确吗?为什么?(2)请你观察上面各式的结构特点,归纳出一个猜想,并证明你的猜想20同学们,我们曾经研究过的正方形网格,得到了网格中正方形的总数的表达式为但为时,应如何计算正方形的具体个数呢?下面我们就一起来研究并解决这个问题首先,通过探究我们已经知道时,我们可以这样做:精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 9 / 13(1)观察并猜想:,;(2)归纳结论:=(_)+(_)=_+_;(3)实践应用:通过以上探究过程,我们就可以算出当为时,正方形网格中正方形的总个数是_应用探究乐园21我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休” 数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透数形结合的基本思想,就是在研究问题的过程精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 10 / 13中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案例如,求的值,其中是正整数对于这个求和问题,如果采用纯代数的方法(首尾两头加) ,问题虽然可以解决,但在求和过程中,需对的奇偶性进行讨论如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观,现利用图形的性质来求的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为, , ,个小圆圈排列组成的,而组成整个三角形小圆圈的个数恰为所求式子的值为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形此时,组成平行四边形的小圆圈共有行,每行有个小圆圈,所以组成平行四边形小圆圈的总个数为个,因此,组成一个三角形小圆圈的个数为,即(1)仿照上述数形结合的思想方法;设计相关图形,求的值,其中是正整数 (要求:画出图形,并利用图形作必要的推理说明)(2)试设计另外一种图形,求的值,其中是正整数 (要精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 11 / 13求:画出图形,并利用图形作必要的推理说明)22在“”的小方格中填上“+” 、 “-”号,如果可以使其代数和为,就称数是“可被表出的数” (如是可被表出的数,这是因为是的一种可被表出的方法) (1)求证:是可被表出的数,而是不可被表出的数;(2)求可被表出的不同方法的种数3有理数的运算问题解决例 1(1) (2)例 2D, , , , 例 3(1)设原式,又,两式相加得,所以;(2) ;(3)原式,其中例 4(1)原式;(2)略数学冲浪123 (1) ;(2)4由,得5B6A7D8A 提示:第个数为,把第、 、 、个数分别求出9 (1)略(2)图:, , ;精品文档2016 全新精品资料-全新公文范文 -全程指导写作 独家原创 12 / 13图:,解得10 (1) ;(2) ;(3)原式11 (1) ;(2) ;(3)12这两个三数组在适当的顺序下对应相等,于是可以断定,与中有一个为,与中有一个为,可推得, 131415B16E17A18c19 (1)小明的猜想显然是不正确的,易举出反例,如(2)将第一组等式变形为, ,得出如下猜想:“若是正整数,则” 证明:左边右边20 (1) ;(2) ;(3) 21原式,构造平行四边形或正方形22 (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论