



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 73 7 立足三维立足三维 超越三维超越三维 抽象变自然抽象变自然 1 1 公开课教学简案 公开课教学简案 课题 线性空间有关概念 时间 1980 7 14 下午 2 00 3 40 班级 江苏电视大学无锡分校化工教学班 教学目的 理解线性空间 子空间 基 维数 同构等概念 会判断一个集合对所指运算是否构成数域 P 上的线性空间 线性子 空间 会确定维数与基 教学过程与内容 一一 考察下列集合 归纳它们的共性考察下列集合 归纳它们的共性 V1 a b c a b cR 这是普通的空间向量的集合 V2 f f ax2 bx c a b cR 这是次数小于 3 的多项式集合 这些集合与实数数域 普通加法 数乘组成的四元组合 V R 满足以下 8 条公理 V1 R V2 R 加 法 交换律 f g g f 结合律 f g h f g h 零元 0 0 f 0 f 负元 0 0 f f 0 单位元1 1 f f 数 乘结合律k k l l k f k f ll 分配律 1 k k l l k f kf fll数乘 与 加法 分配律 2 k k k k f g kf kg 二 类比 抽象出线性空间定义二 类比 抽象出线性空间定义 一般来说 线性空间是一个满足以下8条公理的四元组合 V P 其中V 是一个非空集合 P是一个数域 V 上有一 种代数运算 叫做加法 P与V 之间有一种运算 叫做数量乘法 且满足V P有 lk 1 2 3 存在零元0 0V 使得V 都有 0 0 4 存在 V 使得V 都有 0 5 1 6 k k l l 7 k k l l 8 k k k 三 检验 三 检验 在辨析与变式中深化概念在辨析与变式中深化概念 1 在 V1中限定 c 0 或 c 1 或 b 2c 0 其他规定不变 是否 还构成线性空间 答 c 0 b 2c 0 时还是线性空间 只要验证 k仍然 属于 V1就可以了 即运算的封闭性 c 1 时因为没有零向量 不是 线性空间 2 在 V2中限定 a 0 或 a b cZ 其他规定不变 是否还构 成线性空间 答 a 0 时 没有零多项式 且 f g 不一定属于 V2 不是线性 空间 a b c 是整数时 对于实数 k kf 一般不属于 V2 也不是2 线性空间 可见线性空间与数域有关系 而四元组合 V2 Q 构成线性空间 3 所有二阶矩阵的集合在实数域上对于矩阵的加法与 dc ba 数乘是否构成线性空间 答 可以对照 8 条公理 逐一验证 构成线性空间 4 四元组合 C R 是否构成线性空间 答 复数集合 实数域 普通加法与数乘构成线性空间 小结 线性空间的抽象性 整体性 规律性 运算封闭性 元 素无限性 与数域有关性 四 推广 定义四 推广 定义 n n 维线性空间 子空间 基与维数的概念维线性空间 子空间 基与维数的概念 1 四元组合 Vn R 构成线性空间 其中 Vn x1 x2 xn xiR i 1 2 n 2 定义基的概念 求 V1 V2 所有二阶矩阵 复数集合所构成 的线性空间的一个基 3 定义维数概念 求 V1 V2 所有二阶矩阵 复数集合所构成 的线性空间的维数 思考 下列集合在怎样的数域上构成线性空间 求其一个基与 维数 1 V 是 A 的属于的特征向量 再添一个零向量呢 0 去掉 属于 之后呢 0 2 V 是次数小于 n 的多项式 若将 小于 改成 xf xf 等于 呢 若是整系数多项式呢 若是定义在 上 xf xfab 的连续函数呢 3 V Q 若 R 呢 a2bab ab 4 证明 V B BA AB A V 按矩阵运算构成一个实线性 1 0 1 1 空间 并求它的基与维数 5 在四维实空间 R4中 求齐次方程组 0111353 0333 04523 4321 4321 4321 xxxx xxxx xxxx 确定的解空间的基与维数 并判断 1 15 3 3 是否属于这个解空 间 小结 判断线性空间 子空间的一般方法 基不一定存在 存 在也不唯一 维数是唯一的 但与数域有关 五 比较 在一一对应的基础上导出同构概念五 比较 在一一对应的基础上导出同构概念 同构概念 简明定义 2 2 回顾与反思 回顾与反思 这是 线性空间有关概念是 线性代数 中最基本 最重要 也是最 抽象的概念之一 而概念既是数学的实体 又是数学思维的工具 是浓缩的知识点 是数学内容的基本点 是逻辑导出定理 公式 性质 法则的出发点 是建立学生认知结构的着眼点 所以概念的 学习是数学学习的核心 概念课的教学是教师落实基础的关键 是 学生打好基础的首要环节 概念课是数学教学中的一种主要课型 因此 采用行之有效的概念教学方法 突破抽象概念的理解 对提 高教学质量至关重要 高中数学里 我们学习了平面向量与空间向量 已经看到采用 向量的概念 直线 平面及其位置关系等几何问题变得特别的简单 和清楚 当我们把平面向量 空间向量推广到广义的 n 维向量时 自然应该联想起在研究空间图形时形成的几何里的直观 就是说我 们应该立足三维 超越三维 眼观三维 心怀 n 维 这样抽象的概 念就感到自然了 事实上 线性代数的概念正是从几何直观中抽象 推广得来的 并且应用了几何术语 这使我们有可能在线性代数的 教学中利用基于几何直观的类比 当然需要很小心地采用这种类比 要估计到只采用概念的定义以及证明了的定理严格地验证几何直观 的可能性 线性代数中的概念都应该寻求它的几何类比 例如 n 维向量 中的 n 个有序数可以看作它在 n 维空间的坐标轴上的投影 零向量 可以看作与坐标原点对应 n 维向量可以象力 速度 加速度等物 理向量那样进行加法和数乘运算 并且对于加法运算 交换律和结 合律成立 数乘的分配律也成立 加法运算是单值可逆的 向量的 数乘积当且仅当这个向量是零向量或这个数等于零时才等于零向量 等等 由此可见 用类比法进行线性代数概念的教学是恰当而必须 的 与此同时 与向量集合类似的具有这些性质的还有矩阵集合 一个变数的多项式的集合 在已知区间 a b 上的连续函数的集合 线性齐次方程组的解的集合等等 归纳这些例子的共性 可以看到 进一步推广向量空间的概念 即引进一般的线性空间 是可行而有 益的 这种广义空间中的元素可以是任意数学对象或物理对象 但 对于它们 可以用某种自然方式来定义加法和乘以数的乘法 而且 过渡到线性空间概念这样一个一般而抽象的过程并不会带来任何理 论上的困难 因为任何 n 维线性空间在结构上和性质上与几何直观 的向量空间没有什么两样 但是这样推广之后 应用的范围扩大了 运用线性代数方法到很广阔的自然科学理论问题上的可能性也增加 了 由此可见 用归纳法进行线性空间概念的教学也是恰当而必须 的 这一堂课正是应用了归纳与类比的方法引入线性空间有关概念 的 引入概念只是数学概念的教学的第一步 概念教学一般都要经 历概念的形成 概念的表述 概念的辨析 概念的应用等阶段 否 则认识的概念不够完善 形成的概念也不巩固 概念课上必须通过 具体例子 说明概念的内涵与外延 认识概念的本质 通过反例 错解等检验所认识的概念 在辨析与变式中深化概念 然后在应用 概念解决问题的过程中巩固概念 数学概念是感性认识飞跃到理性认识的结果 而飞跃的实现要 依据数学思想方法 经过观察 分析 类比 归纳 猜想 抽象 概括 推广等合情推理的逻辑加工 在概念教学中应注意将在解决 问题的过程中所涉及到的数学思想方法明显化 对解决问题的思维 策略进行提炼 让学生学会思维 提高自我探索 发现创造的能力 最近拜读了中国首批 18 名博士之一 博士生导师 北京航空航 天大学理学院院长李尚志教授的 让抽象变得显然 建设国家精 品课程的体会 一文 耳目一新 受益匪浅 李教授精辟的指出 抽象来自于实际 来自于具体的例子 抽象的过程就是忽略差别的 过程 从不同的事情中发现共同点的过程 由聪明而糊涂 的过程 从具体的实例中抽象出线性空间的概念 不但使抽象的线性空间的 定义的引入比较自然 而且对于什么是数学的抽象 怎样进行数学 的抽象 怎样由直观而不严格的想法建立严格的数学概念提供了一 个重要的范例 让学生在以后的学习和研究中可以模仿 李教授举了一个简单的例子 初中的乘法公式 a b 2 a2 b2 2ab 将字母 a b 所代表的数的多少也忽略掉了 只关心它们的共同的运 算规律 更进一步的 糊涂 是 公式 a b 2 a2 b2 2ab 中的字母 a b 可以不代表数而代表几何向量 将其中 的乘法理解为向量的内积 公式照样成立 画出有向线段来表示公 式中向量 如图 则公式 a b 2 a2 b2 2a b 的几何意义就是 BA 2 CA 2 CB 2 2 CA CB cosC 这就是余弦定理 当 C 是直角时就是勾股定理 只不过一念之差 在乘法公式 a b 2 a2 b2 2a b 中 难得糊涂 将数与向量 混为 一谈 就立即得到了余弦定理和勾股定理 数学的抽象的威力由 此可见一斑 同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 揭阳市榕城区2026届化学九年级第一学期期中调研试题含解析
- 广东省茂名市高州市2024-2025学年八年级下学期期末物理试题
- 2026届福建省厦门市湖里实验中学英语九年级第一学期期末复习检测模拟试题含解析
- 2025年工伤人员安全培训多选试题及答案
- 2026届山东省青岛42中英语九上期末统考模拟试题含解析
- 供应链上下游企业生产技术信息保密及资源共享协议
- 专业健身教练劳动合同模板(含服务条款)
- 体育产业劳动合同模板(含运动员权益保护)
- 离婚协议书模板:解除婚姻关系后的赡养协议
- 科技园区物业租赁与创新创业支持服务合同
- 公积金提取申请书
- 全国2024年10月自学考试财务报表分析(一)试题和答案
- 教师网络安全专项培训
- 公司博士后工作站管理制度(5篇)
- 2025年辽宁盘锦市企业全景分析报告
- 《弱电施工安全培训》课件
- 医院手术室排烟系统安装合同
- 输变电工程质量通病及防治措施线路工程
- 民办非企业单位理事会制度
- 《岩浆岩岩石学》全套教学课件
- 冷藏车产品营销计划书
评论
0/150
提交评论