简易方程教材分析_第1页
简易方程教材分析_第2页
简易方程教材分析_第3页
简易方程教材分析_第4页
简易方程教材分析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一单元简易方程 本单元在五年级上册用字母表示数的基础上编排 教学方程的知识 包括方程的 概念 解方程的方法以及列方程解决实际问题三大块具体内容 方程是小学数学代数初步知识的主要内容 数学学习从算术范围跨入代数范围 是一次十分重要的飞跃 算术用数字符号表示数量关系 代数用字母符号表示相等关 系 两者有明显的不同 这种不同 一方面能促进学生数学能力的迅速发展 另一方 面在初学方程阶段会有一段时间的不适应 全单元编排十道例题 具体安排见下表 例1等式的含义 例2方程的意义 例3等式的性质 一 例4用等式的性质 一 解一步计算的方程 例5等式的性质 二 例6用等式的性质 二 解一步计算的方程 例7列方程解答一步计算的实际问题 例8 例10列方程解答两 三步计算的实际问题 从上表可以看出教材编排的几个特点 第一 在一步计算的方程和列方程解答一 步计算的实际问题等内容上 教学安排比较细 编排的例题多 推进的步子小 这是 因为学生从习惯了的算术思考转变到代数思考 是很不容易的过程 他们克服思维定 势 适应新的思维方式需要一段时间 这期间的教学适当缓慢些 符合学生的现实 有利于他们转变思维习惯 第二 编排两道例题教学等式的两条性质 还编排两道例 题教学解一步计算的方程 可见 用等式性质解方程是学生应该掌握的基本方法 当 然 用四则计算中的各部分关系 也可以解方程 但不能因它而淡化应用等式性质解 方程 第三 把解一步计算的方程和列方程解答一步计算的实际问题分开编排 先教 学解方程 再教学列方程解决实际问题 因为对初学方程的学生来说 解方程和列方 程是两个知识点 都很重要且都有些困难 分别教学 便于突出重点 分散难点 有 利于学生稳步掌握基础知识 第四 把解两 三步计算的方程和列方程解决两 三步 计算的实际问题合并着教学 例8 例10表面上是列方程解决实际问题 其实既在教学 列方程的相等关系和技巧 也在教学解方程的思路与方法 这样的编排 能较好地体 现数学内容与现实生活的密切联系 一方面分析实际问题里的数量关系 抽象成方程 形成了知识与技能的教学内容 另一方面利用方程解决实际问题 使知识与技能的 教学具有现实意义 能使这个过程成为数学思考 问题解决 情感态度发展的有效载 体 再说 学生已经有了解一步计算方程和列方程解决一步计算问题的经验与能力 一并学习解较复杂的方程和解决较复杂的实际问题 困难不会很大 一 从等式到方程 逐步建构新的数学知识 方程是等式里的一类重要对象 教材用属概念加种差的方式 按 等式 含有未知 数 方程 的线索教学方程 帮助学生了解方程的特点 1 借助天平感受等式的含义 等式是方程概念的生长点 认识方程需要先理解等式 例1就是为教学等式而安排 的 在前面的数学学习中 学生对等式已经有了较多接触 但还没有明确等式的概念 为了认识方程 需要进一步体会等式的含义 建立等式的概念 天平两边平衡 表示它两边的物体质量相等 两边不平衡 表示两边物体的质量 不相等 把天平两边平衡的现象抽象成等式 可以借助直观情境体会等式的含义 例1 给出了一架天平 左边的盘里放一个50克的物体和一个50克的砝码 右边的盘里放一 个100克的砝码 看图能写出一个等式 50 50 100 这个等式的含义 一方面能从 天平两边平衡的现象直观感受 另一方面能通过计算50 50体验 教材没有给等式下定 义 只要求明白等式里有一个等号 表示左右两边的数或式子相等 这就有了等式的 概念 例2继续认识等式 教材里的三点安排应该注意 第一 有些天平的两边平衡 有 些天平的两边不平衡 根据各个天平的状态 有时写出了等式 有时写出的不是等式 在相等与不相等的比较中 进一步体会等式的含义 第二 写出的四个式子里都含 有未知数 其中两个是含有未知数的等式 另两个是含有未知数的不等式 如果说 面对不含未知数的等式 或不等式 可以通过计算以及比较数的大小体会等号的两 边相等 或不相等 那么 面对含有未知数的等式 或不等式 只能借助天平的 直观 体会等号两边相等 或不相等 感受含有未知数的等式的含义 能进一步加 深对等式的认识 第三 由扶到放 帮助学生写出表示天平两边物体质量的大小关系 的四个式子 第一个式子根据天平不平衡现象 只要在圆圈里填写大于号 就能得到 含有未知数的不等式 第二个式子应先写出表示天平左边盘里物体质量的算式 再根 据天平两边平衡 在圆圈里写出等号 形成含有未知数的等式 第三个和第四个式子 都要先写出表示天平左边盘里物体质量的算式 再根据天平不平衡或平衡状态 在 圆圈里写出小于号或等号 形成含有未知数的不等式或等式 获得等式含义的深一层 体会 2 教学方程的意义 从形式上认识方程 含有未知数 和 等式 是方程的两个显著特征 人们经常以这两点来识别方 程 教学方程 要让学生知道方程的形式特点 例1与例2陆续写出了一些等式或不等 式 写出了没有未知数的等式和含有未知数的等式 这些都是教学方程的感知材料 教学时 可以先按 是不是等式 把两道例题写出的式子分类 再按 有没有未知数 把写出的等式分类 指着分出的含有未知数的等式那一类 告诉学生 像x 50 150 2x 200这样含有未知数的等式是方程 让他们了解这两个式子的共同特点是 含 有未知数 和 等式 还可以让学生对两道例题里写出的50 50 100 x 50 100和x 50 200都不能称为方程的原因作出合理的解释 以获得对方程更加深刻的认识 例2的最后讨论 等式与方程有什么关系 加强对方程的体验 白菜 卡通的 提问 例1中的等式 指50 50 100 是方程吗 突出方程应该含有未知数 没有未 知数的等式不是方程 教材还利用集合图表达等式与方程的关系 形象地表现出等式 与方程这两个概念之间的包含与被包含关系 即方程都是等式 而等式不都是方程 练一练 第1题 要求先在题目给出的所有式子里找出等式 再在等式里找出方 程 这个过程又一次体现了等式与方程之间的关系 这道题里 有以x为未知数的式子 还有以y为未知数的式子 使学生对 未知数 有正确的认识 防止把未知数局限为 x 把方程狭隘地理解为 含有x的等式 第2题给出的三个等式里 未知数分别用三 角形 圆形和正方形表示 要求把用图形符号表示的未知数改写成用字母表示 首先 应肯定 给出的三个用图形表示未知数的等式都是方程 然后体会用字母表示未知数 比较方便 3 用方程表示现实情境里的相等关系 深入体会方程的意义 在例1和例2里 从等式到方程 学生初步认识了方程 这些认识虽然联系了天平 的平衡现象 但还是停留在方程的外部特征上 没有过多关注方程的本质意义 练习 一第1题根据线段图列方程 线段图半抽象 半直观地表达数量关系 它排除了有关对 象的非数学内容 直观显示数量之间的实质性联系 根据线段图列方程 要集中思考 线段图里的相等关系 思维的数学化程度比较高 左边一幅线段图表示 x和22合起来 是84 列出的方程是x 22 84 右边一幅线段图表示 3个x是96 列出的方程是3x 96 教学这道题 应让学生先说说线段图里的数量关系 再列出方程 还要用线段图 里的数量关系解释列出的方程的具体含义 感受方程的本质特征 含有未知数的 表达相等关系的等式 第2题用方程表示现实情境里的数量关系 蕴含了列方程解决实际问题的思想方法 进一步凸显了方程的本质特征 第一个情境是电视机原价x元 优惠112元 现价988 元 数量关系是 原价 优惠的元数 现价 列出的方程是x 112 988 当然 根据数量关系 原价 现价 优惠的元数 列出的x 988 112也是方程 但不要根据数量关系 现价 优惠的元数 原价 列出988 112 x这 样的方程 问题不在于988 112 x是不是方程的争论上 而在于像这样求原价仍然是算 术的思想方法 不是代数的思想方法 第二个情境里 每杯饮料x毫升 3杯一共480毫 升 列出的方程最好是3x 480 不必要求列出480 x 3这个方程 更不必列出480 3 x这种方程 因为这个情境最基本的数量关系是 每杯饮料的毫升数 杯数 饮料的总 数 至于 饮料总数 每杯的毫升数 杯数 和 饮料总数 杯数 每杯的毫升数 都是基本数量关系根据乘法中各部分关系改写出来的 列方程应该根据最基本的数量 关系 一般不应用变化出来的数量关系 类似地 第三个情境里大树高7 3米 小树高 x米 大树比小树高6 4米 一般根据 大树高度 小树高度 大树比小树高的米数 列出方程7 3 x 6 4 二 利用等式性质解方程 过去 小学数学主要应用四则计算的各部分关系解方程 如 一个加数 和 另一个加数 被除数 除数 商等 因为学生对这些关系比较熟悉 用来解方程似乎很 顺手 其实 这样的方法 只适宜解简单的方程 不适用解较复杂的方程 而且和中 学里的解方程很不一致 以后还要改变解方程的思路与方法 教材从学生的长远发展 和中小学教学的衔接出发 侧重引导利用等式的性质解方程 这就需要先教学等式的 性质 才能用来解方程 这些内容分两段教学 第一段是等式的两边同时加上或减去 相同的数 结果仍然是等式 第二段是等式的两边同时乘或除以相同的 不是0的数 结果仍然是等式 在每一段教学等式性质以后 都编排例题及时应用于解方程 引导 学生循序渐进地学会解方程的一般思路与方法 1 在直观的情境里 按 形象感受 抽象概括 的线索教学等式性质 教材仍然联系天平的直观情境教学等式的性质 因为在两边平衡的天平上 左右 两边物体的质量发生相同的变化 天平两边仍然保持平衡 这种事实如果抽象成数学 现象 就是要教学的等式性质 利用天平两边物体的质量有规律地变化 天平保持平 衡的事实 能够形象地表示等式的性质 有利于学生理解数学知识 例3教学等式的一个性质 先呈现一架天平 左边盘里放一个质量50克的方块 右 边盘里放一个50克的砝码 根据天平两边平衡 写出等式50 50 例题问学生 怎样在 天平两边增加砝码 使天平仍然保持平衡 激活他们的已有生活经验和数学知识 具体地说 可以在天平两边各添一个10克的砝码 原来的等式就变成50 10 50 10 仍 然是等式 抽象地想 可以在天平两边各添上一个a克的砝码 写出等式50 a 50 a 根据上述的直观体验和形象思考 初步得出结论 等式两边同时加上同一个数 其结 果仍然是等式 例题接着呈现两幅连续的天平图 其中一幅图的天平左右两边都有一个50克的砝 码和一个a克的砝码 根据天平两边平衡 应该在50 a 50 a的圆圈里写出 形 成一个等式 另一幅图在前面的天平两边 各去掉一个a克的砝码 天平仍然保持两边 平衡 这就应该在a 5 a 5 的括号里填去掉的a 在圆圈里写 这一组天平图表明等式两边同时减去同 一个数 结果仍然是等式 综合上面发生的两种现象 可以得出 等式两边同时加上或减去同一个数 所得 结果仍然是等式 教材指出这是等式的性质 学生由此意义接受了等式的一条性质 试一试 给出方程x 25 60 要求根据等号左边的变化 x 25 25 写出右边的变化 60 保持左右两边相等 给出方程x 18 48 根据等 号左边的变化 x 18 18 写出右边的变化 48 使结果仍然是等式 这些练习 初步应用了等式的 性质 加强对等式性质的体验 还渗透了解方程的思想方法 例5继续教学等式的性质 利用前面学习等式性质的数学活动经验 认识等式的另 一条性质 教材仍然根据天平图 在它下面式子的方框里填数 圆圈里填等号 感知 等式的变与不变 第一组图 左边的天平表示x 20 右边天平的两边分别添上一个x克 的方块和一个20克的砝码 看图填空 体会 左边已经写出的2x 表示原来等式的左 边 2 右边应该是20 2 即方框里填 2 表示右边和左边发生相同的变化 在 里填 表示 结果仍然是等式 这组天平图直观显示了 等式两边乘同 一个数 结果仍然是等式 类似地 第二组图左边的天平 一端的盘里有3个质量都 是x克的方块 另一端盘里3个20克的砝码 表示天平两边平衡的等式是3x 60 右边的 天平 一端隐去2个方块 另一端隐去2个砝码 左边写出的 3 表示原来等式 的左边 除以3 学生就会在 的右边方框里也填 3 表示右边的式子也 3 而且画等号表示左右两个式子相等 这组天平图直观显示了 等式两边除以同一个 数 结果仍然是等式 综合两组天平图里的数学内容 初步得出等式的另一条性质 不过 等式的两边同时乘0 等式会变成0 0 而人们通常不让等式的两边都乘0 由 于除法的除数不能是0 所以等式的两边不能同时除以0 学生一般不会独立想到这些 教材提醒他们 等式两边可以同时除以0吗 在初步得出的等式性质里明确 等式 两边 同时乘或除以同一个 不等于0的数 使等式性质的表述更加严密 试一试 给出方程x 6 18 要求根据等号左边的变化 x 6 6 写出右边的 变化 18 保持左右两边相等 给出方程0 7x 3 5 根据等号左边的变化 0 7 x 0 7 写出右边的变化 3 5 使结果仍然是等式 一边应用等式的性质 一 边继续体验等式性质 2 应用等式性质解方程 例4和例6都是教学解方程 教材把解方程置于现实的情境之中 体现它是解决实 际问题的方法 有现实意义 例4根据天平图列出方程x 10 50 很容易看出x是40 学生虽然能说出未知数的 值 但却是应用已有的算术方法 并不清楚解方程的方法 教材示范了方程x 10 50 的两边同时减去10 得出x 40的过程 这是应用等式性质的解方程 关键在于通过方 程两边同时减去10 使等号左边只剩下x 可见 小学数学解方程的思想方法是应用等 式性质 使方程含有未知数的一边只剩下x 从而得出方程的解的过程 如果利用加法 中各部分的关系 和减一个加数等于另一个加数 也能求出这个方程x的值 但不是 教材教学的解方程 用等式性质解方程 关键是方程等号的两边都加 减 几 乘 除以 几 教材 对此有精心的设计 例4第一次教学解方程 在天平图上得到求x值的启示 只要在天 平的左右两边各去掉10克的砝码 这种想法表现在方程上 是应用等式性质与方程的 特点 在等号的两边都减去10 使等号的左边只剩下x 这样 未知数的值只要通过等 号右边的计算就能得到 例6是第二次教学解方程 编写上有三个特点 第一 在现实 的情境里先列出方程 再解方程 教材用图画表示一块长方形试验田的面积是960平方 米 这块地的长40米 宽x米 根据长方形的面积公式 很容易列出方程40 x 960 这 就体现了方程能解决实际问题 蕴含了列方程解决实际问题的思想 第二 学生用自 己想到的方法求长方形地的宽是多少米 这是因为他们对已知长方形的面积与长 求 宽的问题比较熟悉 一般都会选择 面积 长 宽 来解决这个问题 让他们先用自己 的方法解题 有利于集中心向继续学习用等式性质解方程 第三 扶 着学生经历 解方程的过程 写出了解方程的关键一步40 x 40 960 40 让他们解释 方程两边为 什么都要除以40 以体会解方程的方法和要领 另外 例4和例6的编写还注意了三点 一是关于解方程的书写格式 强调等式变 换时 各个等式的等号要上下对齐 教学应该严格遵循 二是求得x的值以后 通过 是不是正确答案 的质疑 引导学生根据 左右两边是不是相等 进行检验 教材里 解方程的数据都不大 运算不复杂 经常可以用口算检验方程的解 三是回顾求x值的 过程 指出什么是方程的解 什么是解方程 这是以后经常要使用的概念 也是学生 可能混淆的概念 3 逐渐掌握解方程的方法并形成相应的技能 学生在两道例题里只是初步学会解方程 如何帮助他们掌握解方程的方法 形成 相应的技能 是教材认真思考的问题 用好教材里的两段安排 能培养这方面的能力 一段安排是两道例题后面的 练一练 为了使方程x 30 80的左边只剩下未知数x 左边需要加30 右边应该同时加30 即x 30 30 80 30 为了使方程x 0 2 0 8的左边只剩下未知数x 左边需要乘0 2 右边应 该同时乘0 2 即x 0 2 0 2 0 8 0 2 这是刚教学解方程时的练习设计 只有抓住 解方程的关键步骤 呈现应用等式性质 求得未知数值的具体过程 才能体会解方程 的策略和思路 另一个安排是练习一第8题起 在初步学会解方程的基础上 把关键步 骤想在头脑里 直接写出求未知数值的那一步 帮助学生适当简化解方程的书写过程 压缩思路 如 解方程x 20 30 在方程的两边都加上20 一边想x 20 20 30 20 同时写出x 30 20 解方程0 6x 4 2 把0 6x 0 6 4 2 0 6想在头 脑里 直接写出x 4 2 0 6 这样书写 能使解方程的思考更加流畅 也与中学里解 方程的 移项 等方法相接轨 有利于提升解方程的能力 三 精心设计练习题 加强对简单方程的理解 练习一配合例1 例6的教学 编排了相当丰富的练习内容 帮助学生逐步丰富对简 单方程的认识 掌握有关的知识 形成初步的技能 前面曾经讲到 练习一里的第1 2两题通过看图列方程 体验现实情境里的比较 简单的相等关系 并依据相等关系列出方程 理解方程的意义 第4 6 8三题通过解 方程的练习 逐渐掌握解方程的思路与方法 形成初步的解方程技能 除了这些 教 材里还有以下的内容安排 1 在直观情境中加强对等式性质的体验 例3和例5借助天平平衡现象 教学了两条等式性质 配合例4的 练一练 第2题 仍然利用天平图给出 两个梨的质量和1个梨加3个桃的质量相等 问1个梨和几个桃同 样重 1个苹果加3个橘子的质量和5个橘子的质量相等 问几个橘子和1个苹果同样重 在直观情境里很容易想到 天平两边各去掉1个梨 就能得出1个梨和3个桃同样重 天平两边各去掉3个橘子 就能得出1个苹果和2个橘子同样重 这就联系现实情境体会 了 等式两边同时减去同一个数 结果仍然是等式 练习一第13题 吴伟兵买1本练习本和3支铅笔 张欣买8支同样的铅笔 两人用去 的钱同样多 如果两人各少买3支铅笔 就能得到1本练习本的价钱等于5支铅笔的价钱 这里也应用了等式性质 等式两边同时减去同一个数 结果仍然是等式 教材多次安排实例 让学生反复体验等式性质 充分感受等式性质的客观性和合 理性 学生对等式性质的理解会逐步深入 应用等式性质解方程就越来越自如 2 通过检验 体验方程的解 理解 方程的解 首先要明白什么是方程的解 其次要会检验方程的解 前者 是概念 后者是方法 应该在理解概念的基础上运用方法 教材指出 使方程左右两边相等的未知数的值叫作方程的解 由此可知 检验 未知数的值是不是方程的解 应该把它代入方程 看它能不能使方程左右两边相等 例4和例6就是这样检验的 练习一第3题 在一个方程的后面给出两个未知数的值 如x 22 78 x 100 x 56 要求确认哪一个未知数的值是方程的解 只要把两个未知数的值分别代入方程 看看哪一个能使方程左右两边相等 这个过程有助于体验方程的解的含义 掌握检验 方程解的方法 第9题把给定的未知数的值代入方程 看看方程左边是等于右边还是小 于或大于右边 如 当x 88时 x 14 74 当x 4时 17x 68 当x 0 1时 x 5 0 2 未知数的值如果能使方程左右两边相等 它就是方程的解 如果不能使方程左右两 边相等 就不是方程的解 这道题也在加强对方程解的认识 3 看图列方程并解方程 为后面列方程解决实际问题作铺垫 学习方程 应该应用它解决实际问题 找到实际问题里的相等关系 列出方程是 十分重要的环节 也是学生感到困难的环节 教材意识到学生的年龄特点与学习困难 在练习一里提前作些铺垫性安排 如 第5 7 10 12等题 让学生找到图画情境 里的相等关系列出方程 并解答 又如第11题 要求找到表格里的相等关系列方程和 解方程 这些练习有两个特点 一是题目已经给定了要求的数量为x 列方程不需要再 设定未知数和写出设句 二是寻找相等关系的难度不大 通常把平面图形的面积公式 或周长公式 单价 数量 总价 1倍数 倍数 几倍数等作为列方程的依据 获得用这 些相等关系列方程的思想方法 对以后的教学很有作用 四 列方程解决稍难的一步计算实际问题 例7解决的一步计算问题在第一学段没有出现过 有时我们把它称之为 逆叙述 的问题 已知今年体重36千克 求去年体重多少千克 如果列算式计算 要把 今年 比去年增加2 5千克 理解成 去年比今年少2 5千克 由于低年级学生进行逆向推 理比较困难 因此那时不安排这种问题的教学 第二学段列方程解答这种问题 利用 题中最基本的数量关系 避免了逆向思维 降低了思考的难度 类似的一步计算问题 还有像例7的 练一练 已知一个数的几倍是多少 求这个数的问题 列方程解决实际问题的关键是找到问题里的相等关系 尽管相等关系也是数量关 系 但列方程的数量关系与列算式的数量关系是明显不同的 列算式的数量关系 把 已知数量和未知数量分开 已知条件作为一方 要求的问题作为另一方 通过已知数 量的运算得到未知数量 而列方程的数量关系 平等 看待已知数量和未知数量 把两者融合起来 共同参与运算 人们一般称之为相等关系 也称等量关系 寻找 相等关系是列方程解决实际问题的教学重点 如果找不到相等关系 就列不出方程 寻找相等关系还是教学难点 习惯了的列算式思维会干扰对相等关系的思考 为此 教材里有三点安排 1 教学方程意义的时候 用方程表示简单现象里的相等关系 练习一第1 2两题 采用学生熟悉的线段图 带括线的图画 图文结合的叙述等 形式呈现简单现象 要求用方程表示其中的数量关系 让学生初步感受什么是方程 怎样列方程 尤其对依据什么列方程 列出的方程表示什么意思 获得初步的感受 指导学生寻找相等关系和列方程要注意两点 一点是联系生活经验和常识 按照 事情发生与发展的线索 理顺数量关系 如 联系商品降价出售的经验 得出 原来 的价钱 优惠的钱数 现在的价钱 从大树比小树高的事实 得出 大树的高度 小树的高度 大树比小树高的米数 有了这些数量关系 列方程就方便了 另一 点是不要过分鼓励对数量关系的发散性思考 也不要过分提倡列出的方程多样化 而 要把握住简单事件里最基本的相等关系 这对以后的教学十分重要 2 教学解方程的时候 渗透列方程解决问题的思想 例4求天平左边正方体的质量 例6求长方形试验田的宽 都是先列出方程再求解 这两道例题的教学重点是应用等式性质解方程 但以解决实际问题为载体有两点好 处 一是体现了列方程是解决实际问题的一种方法 二是体现了列方程要依据实际问 题里的相等关系 例4的相等关系是天平两边物体的质量相等 学生已相当熟悉 例6 依据长方形的面积公式列方程 是对相等关系的又一次引导 在练习一里还有 看图 列方程并解答 的习题 教学这些内容 既不要冲淡解方程这个重点 也要让学生获 得上面所说的两点体会 为正式教学列方程解决实际问题多作些铺垫 3 例7及其 练一练 主要解决逆叙述的相差关系和倍数关系的问题 例7有一个关于 相差多少 的已知条件 练一练 有一个 是几倍 的已知条 件 只要抓住这些数量分析相差数或倍数的具体含义 就能找到实际问题里的相等关 系 首次教学列方程解决实际问题 例7里依次安排三个重要内容 一是怎样寻找数量 之间的相等关系 二是这个问题为什么列方程解答 三是列方程解答实际问题的步骤 与书写格式 这三个内容中 第一个最重要 另两个内容都能在第一个内容里得到启 示 这道例题的相等关系 小红去年的体重 2 5 今年的体重 是从 今年比去年 增加了2 5千克 得出的 分析这个已知条件 会想到小红今年的体重 去年的体重 2 5千克是三个有关系的数量 接着会想到今年的体重重些 去年的体重轻些 2 5千 克是两年体重的相差数 然后把上面的想法用数学式子表示成相等关系式 列方程便 有了依据 只要带领学生经历这些思考 他们能够像 萝卜 卡通那样说出相等关系 从列算式的思维转变为列方程的思维 教材指出 可以根据 去年的体重 2 5 今年的体重 列出方程 为什么列方程解 题 必须让学生明白这个问题 在相等关系式上 有两个数量已知 一个数量未知 两个已知数量不在等号的同一边 而是一个已知数量与未知数量在等号的一边 另一 个已知数量在等号另一边 去年的体重 千克 2 5 今年的体重 36千克 遇到这种情况 如果把未知的数量设为x千克 很容易列出方程 通过解方程 就 能求出未知的数量 这就是为什么列方程解题的原因 明白这一点 就体会了列方程 是解决问题的一种有效方法 解题活动就会在寻找相等关系的基础上 很自然地按照 写设句 列方程 解方程 的顺序进行 列方程解决实际问题的步骤由此得出 例题还根据 今年的体重 去年的体重 2 5 列方程解题 这是出于两点考虑 首先是学生分析相差关系 不 会都得出像 萝卜 卡通那样的相等关系式 他们从今年的体重重些 去年的体重轻 些 两年体重相差2 5千克 完全有可能想到 番茄 卡通的相等关系式 况且不同的 相等关系对列方程 并没有明显的好与坏 优与劣的区别 都可以用于解题 其次是 用等式性质解方程36 x 2 5 会遇到一个小矛盾 未知数在方程里是减数 等号两边同时加上x 左边的x 被消去 而右边却有了x 这时可以把方程的左边与右边相交换 使未知数回到等号的 左边 继续解方程 教材为处理这个小矛盾 作了示范 需要强调的是 例题先后采用两个数量关系 列出两个方程 用两种解法解答了 实际问题 这并不是 一题多解 并不要求学生用两种方法解题 而是提醒教师 根据 今年比去年增加2 5千克 寻找实际问题的相等关系 学生中很可能出现不同的 表达 从而列出不同的方程 要允许学生按自己对 今年比去年增加2 5千克 的理解 用自己想到的相等关系列出方程来解决问题 练一练 已知一个数的几倍是多少 求这个数 一般从 蓝鲸的体重是非洲象 的33倍 这个条件 得出数量关系式 非洲象的体重 33 蓝鲸的体重 并以此为相 等关系列方程求非洲象的体重 这是已知两个乘数的积与一个乘数 求另一个乘数经 常使用的方法 教材希望学生独立解决这个实际问题 经历 分析已知的倍数关系 得出相等关系 感受需要列方程解答 按列方程的步骤解题 的过程 教学应利用交 流与评价的机会 突出怎样找到相等关系 为什么列方程解答等思考的重点 帮助学 生逐步形成有关列方程解决问题的思想与方法 4 检验答案是否正确 反思解决问题的过程与方法 是教学列方程解决实际问题不可忽 视的环节 列方程解决实际问题的两个要点分别是列出方程和解方程 检验答案应该在这两 个环节上进行 首先要检查列方程的相等关系是否符合实际问题的题意 然后检查未 知数的值是否符合方程 然而 人们往往直接检验答案是否符合实际问题的数量关系 这种做法是很好的 就例4来说 求得去年体重33 5千克以后 只要检验今年体重是 不是比去年增加2 5千克 如果今年体重确实比去年增加2 5千克 则解题正确 如果 今年体重不是比去年增加2 5千克 则答案错误 就 练一练 来说 求得非洲象大约 重5吨 只要检验蓝鲸的体重是不是非洲象的33倍 或是通过5 33检验 或者通过165 5检验 反思解决问题的过程与方法 是为了积累列方程解决问题的经验 应围绕列方程 解决实际问题的主要步骤有哪些 以及怎样寻找实际问题中的相等关系 怎样按相等 关系列出方程 怎样检验解题结果等要点 组织学生体会数学活动 内化解题要领 掌握解题步骤 五 解稍复杂方程的策略 转化成简单的方程 例8 例9和例10都是解答两 三步计算的实际问题 列出的方程稍复杂些 这三 道例题都同时教学两个知识 一个是怎样解稍复杂的方程 还有一个是如何列稍复杂 的方程 把两个知识结合着教学 能体现数学内容 方程 和现实生活 实际问题 的联系 一方面分析实际问题里的数量关系 抽象出方程 形成知识与技能的教学内 容 另一方面利用方程解决实际问题 使知识与技能的教学具有现实意义 成为数学 思考 问题解决 情感态度有效发展的载体 把两个知识结合着教学也有其可行性 因为学生已经具有列方程解答一步计算问题的能力 以此为基础 有条件探索并掌握 解决较复杂问题的方法 列出稍复杂的方程并求解 三道例题涉及的方程分别形如ax b c ax bx c ax b c d 解这些方程 都要通过计算或者利用等式性质 把原方程化归成简单方程而求出未知数的值 像这 样化复杂为简单 变新知为旧知是人们解决问题的常用策略 也是探索与创新不可缺 少的思想方法 引导学生通过转化解稍复杂的方程 能充分体验转化思想 发展解决 问题的策略 1 从各个方程的特点出发 使用不同的化简方法 解ax b c这样的方程 一般根据 等式两边同时加上或减去相同的数 结果仍 然是等式 这条性质化简原来的方程 例8在列出方程2x 22 64以后 写出了解这个方程的第一步 2x 22 22 64 22 使原方程化简成2x 86 这是学生能够看懂的 教学应让他们说说这一 步在做什么以及为什么这样做 体会利用等式性质化简方程的意图 过去教材强调把a x看成 一个数 目的是把ax作为被减数 应用加 减法中各部分的关系解方程 而 新课程应用等式性质解方程 突出的是化繁为简的思想与方法 解ax bx c这样的方程 一般应用运算律和相应的计算化简方程 例9中方程的 左边是x 3x可以改写成 1 3 x 方程x 3x 290可以化简成4x 290 这种改写在五年 级上册用字母表示数时已经教学 现在只要计算1 3就能实现化简原来方程的目的 教 学时还是应让学生说说这样改写的依据是什么 目的是什么 解ax b c d这样的方程 一般按运算顺序先算出b c的积 原来的方程就变成 像例8里的方程 也就实现了化新为旧 例10列出的方程3x 95 3 540 算出95 3的 积 原方程就化简成3x 285 540 通过上面的分析 应该看到解稍复杂的方程是很重要的知识与技能 如果不能正 确地解稍复杂方程 就不能解答较复杂的实际问题 而解稍复杂的方程 如果能抓住 化繁为简的转化思想 学生就能主动调整自己的认知结构 迅速形成解方程的能力 2 各道例题采用不同的教学思路 鼓励学生继续解转化后的方程 例8让学生接着解2x 86 求出x的值 这是因为他们具有解这种方程的能力 教 材这样安排 目的是把转化思想与方法放在突出的位置上 促进新旧知识的衔接 有 效地使用教学资源 检验方程的解已经在前面教过 例8要求学生检验 不仅是培养良 好的习惯 还要通过 结果是正确的 确认解稍复杂方程的 策略与方法是正确的 例9把原来的方程x 3x 290化简成4x 290以后 安排学生先算出x的值 再算出3x 表示的值 这是因为72 5米和217 5米是实际问题的两个答案 以前列方程解决的实际 问题 一般只有一个答案 现在遇到有两个答案的情况 需要完整呈现解题过程 在 解题步骤和书写格式上作出必要的规范 另外 这道例题在检验上也有拓展 列方程 解决实际问题 不只是检验解方程是否正确 还要检验列出的方程是不是符合现实的 数量关系 由于答案是通过解方程得到的 而方程是依据实际问题的数量关系列出的 所以人们通常把答案直接放到实际问题的数量关系里检验 这道例题给出的数量关 系有两个 分别是颐和园占地 即陆地和水面一共占地 290公顷 水面面积是陆地面 积的3倍 解题得到的水面面积和陆地面积符合这两个数量关系 才是正确的 教材就 这样的检验 给出引导 要求在检验结果正确以后 再填写答句 例10把列出的方程3x 95 3 540改写成3x 285 540 这就把原方程化归成了例8 教学的方程 把继续解方程和检验方程的解留给学生完成是很自然的安排 如果根据 速度和 时间 总路程 列出 x 95 3 540 则又是一种未见过的方程 可 以让学生尝试着解这个方程 应用等式性质 等号两边同时除以3 先算出x 95 180 再得出未知数的值 这样做 仍然应突出化简方程的思想方法 3 适量安排解方程的练习 前面说过 例8 例10都有列方程和解方程两个教学内容 列出的方程必须正确求 解 才可能得到正确的答案 因此 教材把解稍复杂的方程作为一个重要知识 安排 必要的练习 练习二从第5题起配合例8的教学 第5题和第9题都是解方程 其中有像a x b c的方程 与例题的方程是一样的 还有像x a b c和ax 2 b的方程 用于 解决加减两步计算的实际问题 如第11题 以及已知三角形的面积求高或底的问题 如第10题 解这些方程 只要利用等式性质都能逐步化简 直到求出方程的解 练 习三第1 4 8题都是解方程的习题 编排的方程与例9 例10的方程差不多 学生解a x bx c ax b c d这些方程应该比较顺手 六 列方程解决较复杂实际问题的关键 找到相等关系 某个实际问题为什么选择列方程解答 或者为什么选择列算式解答 经常是由数 量关系的特点所决定的 列算式解决实际问题 分析数量关系通常把已知条件作为一 个方面 所求问题作为另一方面 着重沟通未知数量与已知数量的关系 利用已知数 量组成的算式 解决所求问题 列方程的相等关系 把已知数量与未知数量 平等 联系起来 共同组成反映实际问题数量关系的等式 学生在列方程解答一步计算的问 题时 已经初步有了这方面的体会 还要通过列方程解答两 三步计算的实际问题 进一步加强对相等关系的认识 提高寻找并利用相等关系的能力 1 灵活开展寻找相等关系的思维活动 较复杂的问题之所以复杂 在于它的数量关系复杂 例8里大雁塔的高度 比小雁 塔高度的2倍少22米 其中既有倍数关系 又有相差关系 是两种关系的有序复合 例9里给出两个并列的条件 颐和园水面面积与陆地面积一共290公顷 水面面积大约 是陆地面积的3倍 从 和 与 倍 两个角度分别揭示水面面积和陆地面积的关系 例10是四年级教学的相遇问题的逆向变式 涉及的数量比较多 包括客车行驶的速度 与时间 货车行驶的速度与时间 两车行驶的总路程等 因此 寻找复杂问题的相等 关系 要仔细梳理数量关系 分清事件发生与发展过程的主次和先后 寻找相等关系没有固定的思维模式 三 四年级教学的解决问题策略 仍然是探 索相等关系的可用资源 可以选择适宜的形式整理实际问题里的数学信息 正确理解 题意 可以利用从条件向问题或者从问题向条件推理的经验 分析数量之间的关系 教材从实际问题的结构特点和学生的思维发展水平出发 灵活设计寻找相等关系的教 学活动 学生已经能够解决类似红花有10朵 求比红花朵数的2倍少4朵是多少朵的问题 对 几倍少几 这样的数量关系已有初步的理解 因此 例8要求学生找出 大雁塔与 小雁塔高度之间有什么相等关系 可以利用已有的倍数概念和相差概念 通过推理 把 比小雁塔高度的2倍少22米 改写成数学式子 小雁塔高度 2 22 从而得到相等关系 小雁塔高度 2 22 大雁塔的高度 为了突出相等关系 教材在它上面加了色块 让教学注意相等关 系是怎样找到 怎样表达的 加强得出相等关系的过程 学生中有可能出现 小雁塔 高度 2 大雁塔高度 22 这样的相等关系 也能列方程解题 事实上 人们大多喜欢依据 小雁塔高度 2 22 大雁塔的高度 列方程解决问题 教学可以让学生知道应用 小雁塔高度 2 大雁塔高度 22 也能列出方程 但不必在相等关系的举一反三上花费力气 应提倡 根据相等关系 小雁塔高度 2 22 大雁塔高度 确定列方程解决问题 例9列方程求颐和园的陆地面积与水面面积 设哪一个数量为x 另一个数量怎样 表示 涉及如何合理利用两个并列的已知条件 为此 教材选择了线段图 通常先画 表示一倍数 陆地面积 的线段 再画表示三倍数 水面面积 的线段 显然设陆地 面积为x公顷 把水面面积表示为3x公顷是很自然的 再根据陆地面积与水面面积相加 的和是颐和园的总面积 就能找到解决这个问题的相等关系 例10是相遇问题 四年级初步教学相遇问题时 曾经把画示意图作为解决问题的 一种策略 学生已经能画线段图表示相遇问题的题意 也能理解相遇问题里的数量关 系 会用一方行的路程加另一方行的路程求得双方行的总路程 或者用双方的速度和 乘同时运动的时间求得两方行的总路程 教材充分利用这些教学资源 仍然让学生画 线段图表示题意 既感受现在求一方速度的问题与原来求双方路程和问题的不同 又 体现现在问题与原来问题在运动方式和数量关系上的相同点 从而利用求 路程和 的方法作为解决现在问题的相等关系 2 加强写出含有字母式子的练习 进一步把握数量关系 为列方程打基础 含有字母的式子是方程的重要组成部分 根据相等关系列方程 需要写出含有字 母的式子 学生是不是具有用字母表示数的意识 能不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论